期刊文献+

我国钢材期货市场波动率的GARCH族模型研究 被引量:12

Modeling Steel Futures Volatility Using GARCH Models
原文传递
导出
摘要 钢材是仅次于原油的全球第二大大宗商品,因此钢材及其相关产品价格波动的描述对各类参与者的套期保值及规避风险有重要意义。以上海期货交易所钢材期货价格的15分钟高频数据为对象,利用8类GARCH族模型进行了波动率拟合的实证研究,并运用6类损失函数以及Diebold-Mariano检验方法对各类模型的波动率拟合精度进行了比较。结果表明,能够刻画长记忆特征的HYGARCH模型在刻画我国钢材期货市场的波动率上具有相对优于其他模型的精度,但总的来说,各种模型并未表现出显著差异。 Steel is the world's second largest commodities after oil, so it important to describe and fit fluctuations in the price of steel and relevant product, and has important significance to the participants of the hedging and avoid the risk. With high frequency data for 15 minutes of steel futures price in the Shanghai futures exchange, then it is empirical research in the fit of volatility using 8 types of GARCH model, and using 6 types of loss function and Diebold-Mariano examination methods for compare the volatility fitting precision of various models. Results show that HYGARCH model which Can depict long memory characteristics have a relatively superior in fitting accuracy, but overall, the accuracy of all models do not show significant difference.
作者 李云红 魏宇
出处 《数理统计与管理》 CSSCI 北大核心 2013年第2期191-201,共11页 Journal of Applied Statistics and Management
基金 国家自然科学基金(70771097 71071131 71090402 71271227) 教育部创新团队发展计划(PCSIRT0860) 中央高校基本科研业务费专项资金资助项目(SWJTU11ZT30 SWJTU11CX137) 教育部人文社会科学研究青年基金项目(No:11XJC790004)
关键词 钢材期货 已实现波动率 GARCH族模型 D-M检验 Steel futures, Realized volatility, GARCH-type models, D-M test
  • 相关文献

参考文献20

  • 1Trippi Robert R and DeSieno Duane. Trading equity index futures with a neural network [J]. Journal of Portfolio Management, 1992, 19: 27-33.
  • 2Giot P, Laurent S. Market risk in commodity markets: A VaR approach [J]. Energy Economics, 2003, 25: 435-457.
  • 3Smith K L. Forecasting changes in copper futures volatility with GARCH models using an iterated algorithm [J]. Review of Quantitative and Finance and Accounting, 2003, 20: 245-265.
  • 4Edmond H C Wu, Philip L H Yu. Volatility modeling of multivariate financial time series by using ICA-GARCH models [J]. Intelligent Data Engineering and Automated Learning -- IDEAL 2005, 2005, 35: 571-579.
  • 5Kang S H, Kang S M, and Yoon S M. Forecasting volatility of crude oil markets [J]. Energy Economics, 2009, 31: 119-125.
  • 6张跃军,范英,魏一鸣.基于GED—GARCH模型的中国原油价格波动特征研究[J].数理统计与管理,2007,26(3):398-406. 被引量:50
  • 7魏宇.金融市场的多分形波动率测度、模型及其SPA检验[J].管理科学学报,2009,12(5):88-99. 被引量:28
  • 8Andersen T G, Bollerslev T, Meddahi N. Correcting the errors: Volatility forecast evaluation using high frequency data and realized volatilities [J]. Econometrica, 2005, 73: 279-296.
  • 9Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts [J]. International Economic Review, 1998, 39: 885-905.
  • 10Hansen P R, Lunde A. Consistent ranking of volatility models [J]. Journal of Econometrics, 2006, 131: 97-121.

二级参考文献43

共引文献76

同被引文献128

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部