期刊文献+

皮肤毛孔照片诊断标准评价的潜在分类变量模型研究 被引量:2

Evaluating Standardized Photogram of Facial Pores and Diagnostic Accuracy of Tests Using Latent Class Models
原文传递
导出
摘要 本文在无金标准情况下探讨皮肤毛孔标准照片制定的合理性和可行性,对医师诊断正确性进行评价。按照毛孔粗大程度制定分类为5水平的毛孔标准照片。对128名女性志愿者制作鼻翼毛孔照片,5位年资相近的皮肤科医师按照诊断标准和标准照片对128例自愿者照片进行独立的等级评分。诊断结果数据采用潜在分类变量模型(Latent Class Model,LCM)进行分析,分别拟合5位医师诊断条件概率一致的模型和诊断条件概率不一致的模型。计算医师诊断的条件概率和后验概率。潜变量分析结果提示诊断标准过于细化且分类模糊,依据条件概率将原始分类重新划分为3类的模型较好地拟合了诊断数据。运用客观和准确的能够真实反应和区分个体情况的诊断标准是诊断试验评价的基础和前提。潜在分类模型能够有效地处理无金标准的诊断重复性或一致性研究数据。 This paper was designed to investigate the criteria of standardized pore photographs without gold standard and assess the diagnostic accuracy of dermatologists. We formulated the standardized pore photographs into 5 stages according to the magnitude of pores and made photograph of pores on nasal ala from 128 female volunteers. Five dermatologists with similar experience classified the 128 photographs into 5 stages with reference to the standardized photograph. Latent class model (LCM) was used to analyze the data. We established two LCMs, one with consistent conditional probability among the 5 dermatologists, the other with inconsistent conditional probability. Conditional probability and posterior probability were also calculated. The outcomes showed that the 5-stage diagnostic criterion was too detailed and ambiguous. The model fitted the data well after reclassifying the data into 3 stages according to conditional probability. The standardized criterion which is objective and accurate, and can truly reflect and differentiate the status of individual is essential to assess diagnostic test. LCM can effectively deal with diagnostic data of consistency and reproducibility.
出处 《数理统计与管理》 CSSCI 北大核心 2013年第2期295-303,共9页 Journal of Applied Statistics and Management
关键词 毛孔标准照片 诊断试验 潜在分类模型 standardized photogram of pores, diagnostic tests, latent class models
  • 相关文献

参考文献10

  • 1魏兵,步宏,朱采蓉,郭立新,陈卉娇,赵春,章培,陈代云,唐颖,姜勇.交界性导管增生性乳腺病的病理诊断重复性研究[J].四川大学学报(医学版),2004,35(6):849-853. 被引量:4
  • 2王喆宇,贾振华,吴以岭,耿直.无指导的中医证候诊断数据的隐变量分析[J].数理统计与管理,2008,27(5):938-944. 被引量:5
  • 3孙尚拱.隐变量分析简介(一)[J].数理统计与管理,2002,21(1):52-56. 被引量:17
  • 4Jacques A Hagenaars, Allan L McCutcheon. Applied Latent Class Analysis [M]. New York: United States by Cambridge University Press, 2002.
  • 5David W Kaplan. The Sage Handbook of Quantitative Methodology for the Social Sciences [M]. California: Sage Publication, 2004.
  • 6John S Uebersax, William M Grove. Latent class analysis of diagnostic agreement [J]. Statistics in medicine, 1990, 9: 559-572.
  • 7Margaret Sullivan Pepe, Holly Janes. Insights into latent class analysis of diagnostic test performance [J]. Biostatistics, 2007, 8(2): 474-484.
  • 8Girardi E, Angeletti C, Puro V, etc. Estimating diagnostic accuracy of tests for latent tuberculosis infection without a gold standard [J]. Euro Surveil, 2009, 14(43): 1-9.
  • 9Paul S Albert, Lori E Dodd. A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard [J]. Biometrics, 2004, 60(6): 427-435.
  • 10Joris Menten, Marleen Boelaert, Emmanuel Lesaffre. Bayesian latent class models with conditionally dependent diagnostic tests: A case study [J]. Statistics in medicine, 2008, 27: 4469-4488.

二级参考文献26

  • 1孙尚拱.实用多变量统计方法与计算程序[M].北京:北京医科大学、中国协和医科大学联合出版社,1990..
  • 2Bergeron C, Nogales FF, Masseroli M, et al. A multicentric European study testing the reproducibility of the WHO classification of endometrial hyperplasia with a proposal of a simplified working classification for biopsy and curettage specimens. Am J Surg
  • 3Rosai J. Borderline epithelial lesions of the breast. Am J Surg Pathol, 1991;15(3):209.
  • 4Schnitt SJ, Connolly JL, Tavassoli FA, et al. Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol,1992;16(12):1133.
  • 5Page DL, Rogers LW. Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum Pathol,1992;23(10):1095.
  • 6Joreskog K G. A General Method for Estimating a Linear Structural Equation System, Structural Equation Models in the Social Sciences. A. S. Goldberger and O. D. Duncan, eds. New York: Seminar Press, 1973: 85-112.
  • 7Joreskog K G. Structural Equation Models in the Social Sciences: Specification, Estimation and Testing. Application of Statistics, P. R. Krishnaiah, ed. Amserdam: North-Holland Publishing Co., 1977: 265-87.
  • 8Joreskog K G and Sorbom D. Recent Development in LISREL: Automatic Starting Values [J]. Journal of Marketing Research, 1982, 19: 404-416.
  • 9Muthen B O. Contributions to factor analysis of dichotomous variables [J]. Psychometrika, 1978, 38: 171-189.
  • 10Muthen B O and Christofferson A. Simultaneous Factor Analysis of Dichotomous Variables in Several Groups [J]. Psychometrika, 1981, 46: 407-419.

共引文献23

同被引文献45

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部