期刊文献+

自适应信息选择PSO算法及其特性分析 被引量:2

Adaptive partly informed PSO algorithm and its characteristics analysis
下载PDF
导出
摘要 针对粒子群优化过程中容易出现早熟收敛或停滞的问题,在全信息粒子群优化(FIPSO)算法的基础上结合社会心理学原理提出了一种新的粒子群优化算法——自适应信息选择粒子群优化算法(API-PSO)。在API-PSO算法中,粒子根据其邻域粒子不同表现,自适应地选择群体共享经验。实验表明,新的优化算法具有较好的收敛精度和收敛速度。分别对API-PSO算法的种群多样性和收敛性进行了数学分析,分析结果为合理选择算法参数,解决算法种群多样性匮乏,促进种群进化发展,改善算法性能提供了理论依据。 To avoid the premature convergence or stagnation during particle swarm optimization process, on the basis of Fully- Informed Particle Swarm Optimization (FIPSO) in conjunction with social psychological principles, the novel Adaptive Partly Informed Particle Swarm Optimization (API-PSO) algorithm is proposed. In API-PSO algorithm, a particle adaptively selects swarm-shared experience according to performances of its neighboring particles. Experiment results show that API-PSO offers satisfactory convergence accuracy and speed. Probabilistic analysis on conducted which serves as the theoretic basis to select the algorithm evolution development and improve algorithm performance. swarm diversity and convergence analysis of API-PSO is parameters, solve swarm diversity lack, facilitate swarm
出处 《计算机工程与应用》 CSCD 2013年第6期1-7,28,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61104175) 四川省科技创新苗子工程资助项目(No.2010-013)
关键词 群体智能 粒子群优化 早熟收敛 种群多样性 swarm intelligence Particle Swarm Optimization(PSO) premature convergence population diversity
  • 相关文献

参考文献14

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C] //Proc of the IEEE Int’l Conf on Neural Networks.Perth:IEEE Press,1995:1942-1948.
  • 2Clerc M,Kennedy J.The particle swarm—explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
  • 3Mendes R,Kennedy J,Neves J.The fully informed particle swarm:simpler,maybe better[J].IEEE Transactions on Evolu-tionary Computation,2004,8(3):204-210.
  • 4Kennedy J,Mendes R.Population structure and particle swarm performance[C] //Proceedings of the2002Congress on Evolu-tionary Computation.Honolulu,HI,USA:[s.n.] ,2002:1671-1676.
  • 5Shi Y,Eberhart R C.Empirical study of particle swarm opti-mization[C] //Proc of the1999Congress on Evolutionary Computation.Piscataway:IEEE Service Center,1999:1945-1950.
  • 6van den Bergh F,Engelbrecht A P.A new locally convergent particle swarm optimiser[C] //IEEE Conference on Systems,Man and Cybernetics.Hammamet,Tunisia:IEEE Press,2002:184-190.
  • 7Peram T,VeeramachaneniK,Mohan C K.Fitness-distance-ratio based particle swarm optimization[C] //Proceedings of the IEEE Swarm Intelligence Symposium.Indianapolis,Indiana,USA:IEEE Press,2003:174-181.
  • 8Liang J J,Qin A K,Suganthan P N,et al.Comprehensive learning particle swarm optimizer for global optimizationof multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
  • 9Chunming Y,Simon D.A new particle swarm optimization technique[C] //18th International Conference on Systems En-gineering.Las Vegas,NV,USA:[s.n.] ,2005:164-169.
  • 10Jian W,Xue Y,Huang J.Combined algorithm for time-varying system based on improved particle swarm optimization and EWRLS algorithm[C] //Proceedings of the IEEE International Conference on Industrial Technology.Hammamet,Tunisia:IEEE Press,2004:1474-1477.

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部