期刊文献+

面向隐私保护聚类的平面反射数据扰动方法 被引量:2

Plane reflection data perturbation method for privacy preserving clustering
下载PDF
导出
摘要 为了解决聚类挖掘中的隐私保护问题,针对现有的几何数据转换方法隐私保护度低的不足,提出了一种基于平面反射的几何数据转换方法,即任意选择平面上的一条直线,且将所有属性两两配对以构成平面上的点,对每个点作关于直线的对称点,所得数据即转换后的数据。通过实验证明,这种方法简单易行且比平移、缩放、旋转等几何数据转换方法具有更高的隐私保护度。 In order to solve the problem of privacy protection in cluster mining, in view of the low privacy of the existing methods of geometric data transformation, this paper presents a method of plane reflection based geometric data transformation. A straight line in the plane is chosen arbitrarily and all attributes are paired to form points on the plane. The symmetry point of each point is computed. The computed result is the transformed data. Proved by the experiments, this method is simple and has a higher degree of privacy protection than translation, scaling, rotation and other geometric data transformation methods.
出处 《计算机工程与应用》 CSCD 2013年第6期135-138,共4页 Computer Engineering and Applications
关键词 聚类挖掘 隐私保护 几何数据转换 平面反射 cluster mining privacy protection geometric data transformation plane reflection
  • 相关文献

参考文献7

  • 1Vaidya J,Clifton C.Privacy-preserving data mining:why,how and when[J].IEEE Security and Privacy,2004,2.
  • 2Kargupta H,Huang W,Sivakumar K,et al.Distributed cluster-ing using collective principal component analysis[J].Knowl-edge and Information Systems,2001,3(4):422-448.
  • 3Achlioptas.Database-friendly random projections[C] //Proceed-ings of the Twentieth ACM Symposium on Principles of Database Systems.[S.l.] :ACM Press,2001:274-281.
  • 4Oliveira S R M,Za ane O R.Privacy preserving clustering by data transformation[C] //Proceedings of the18th Brazilian Symposium on Databases.Brazil:[s.n.] ,2003:304-318.
  • 5Oliveira S R M,Za ane R.Achieving privacy preservation when sharing data for clustering.[C] //Proc of the International Workshop on Secure Data Management in a Connected World(SDM’04)in Conjunction with VLDB.Toronto:[s.n.] ,2004:67-82.
  • 6王静,汪晓刚.一种新的保护原始数据隐私性的聚类算法[C] //第十届中国科协年会.北京:国防工业出版社,2008-09-01.
  • 7陈晓明,李军怀,彭军,刘海玲,张璟.隐私保护数据挖掘算法综述[J].计算机科学,2007,34(6):183-186. 被引量:16

二级参考文献19

  • 1Han Jiawei Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Cranor L F,Reagle J,Ackerman M S.Beyond concern:Understanding net users' attitudes about online privacy:[Technical Report TR 99.4.3.].AT&T Labs-Research,1999.http://www.ressearch.att.com/library/
  • 3Vaidya J,Clifton C.Privacy preserving association rule mining in vertically partitioned data.In:the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2002.639~644
  • 4Verykios V S,Bertino E,Nai Fovino I.State-of-the-art in PrivacypreservingData Mining,SIGMOD Record,2004,33 (1)
  • 5Oleveira S R M,Zaiane O R.Protecting Sensetive Knowledge by Data Sanitization.In:Proceedings of the Third IEEE International Conference on Data Mining,2003
  • 6Oliveria S R M,Zaiane O R.Privacy Preserving Frequent Itemset Mining.In:Workshop on Privacy,Security,and Data Mining at The 2002 IEEE International Conference on Data Mining (ICDM 02),Maebashi City,Japan,December 2002
  • 7Dasseni E,Verykios V S,Elmagarmid A K,et al.Hiding Association Rules by Using Confidence and Support.In:Procedings of the 4th Information Hiding Workshop,2001.369~383
  • 8Pinkas B.Cryptographic techniques for privacy-preserving data mining.SIGKDD Explorations,2002,4 (2)
  • 9Chang Li Wu,Moskowitz I S.Parsimonious downgrading and decisions trees applied to the inference problem.In:Proceedings of the 1998 New Security Paradigms Workshop,1998.82~89
  • 10Evfimievski A,Srikant R,Agrawal R,et al.Privacy preserving mining of association rules.In:Proc.of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and DataMining,ACM Press,2002.217~228

共引文献15

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部