期刊文献+

基于小波包分解的整体变分去噪算法 被引量:4

Total variation algorithm of image denoising based on wavelet packet decomposition
下载PDF
导出
摘要 由Rudin等人提出的整体变分(TV)模型被认为是目前最好的图像去噪模型之一。理论表明,TV模型对分块常量的图像去噪效果显著。对于纹理细节丰富的图像,通过引入小波包分解技术,对图像的纹理细节进行多层小波包分解,得到一系列近似分块常量的子图像,用TV模型对子图像分别进行处理,从而图像的纹理细节得到了更好的保留。相对于单独使用TV模型去噪,该方法得到的复原图像峰值信噪比(PSNR)提高了1dB左右。同时由于采用改进的Bregman迭代方案求解TV模型,算法收敛时间得到了极大的减少。 The Total Variation(TV) model of Rudin et al. for image denoising is considered as one of the best denoising models. Theory suggests that the TV model denoises well piecewise constant images. For the texture rich image, in this paper, it is decom- posed by multi-wavelet packet into a series of approximate piecewise constant sub-images. Sub-images are processed separately by TV model. Thus, the texture detail of image is preserved better and the Peak Signal to Noise Ratio (PSNR) of denoised image is improved 1 dB, compared with using TV model alone. At the same time, the improved Bregman iteration scheme is adopted to solve TV model. The algorithm convergence time has been greatly decreased.
出处 《计算机工程与应用》 CSCD 2013年第6期156-158,174,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61070233) 西北工业大学基础研究基金项目(No.JC200946)
关键词 图像去噪 整体变分(TV)模型 小波包分解 Bregman迭代 image denoising Total Variation(TV) model wavelet packet decomposition Bregman iteration
  • 相关文献

参考文献8

  • 1吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008.
  • 2Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268.
  • 3Goldstein T,Osher S.The split Bregman method for L1reg-ularized problems[R].UCLA CAM Report,2008.
  • 4Jia R Q,Zhao H Q,Zhao W.Convergence analysis of the Bregman method for the variational model of image denois-ing[J].Appl Comput Harmon Anal,2009,27:367-379.
  • 5Jia R Q,Zhao H Q.A fast algorithm for the total variation model of image denoising[J].Adv Comput Math,2010,33:231-241.
  • 6王知强.基于小波收缩与非线性扩散的去噪算法[J].计算机工程,2011,37(7):249-252. 被引量:6
  • 7Wickerhauser M V.Adapted wavelet analysis from theory to software[M].Wellesley,MA:Peters A K,1994.
  • 8Chan T F,Shen J H.Mathematical models for local non-tex-ture inpainting[J].SIAM J Appl Math,2001,62(3):1019-1043.

二级参考文献13

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2Rodin L,Osher S,Fatemi E.Nonlinear Total Variation Based Noise Removal Algorithms[J].Physica D,1992,60(14):259-268.
  • 3Mrazek P,Weickert J,Steidl G.Correspondences Between Wavelet Shrinkage and Nonlinear Diffusion[C]//Proc.of the 4th International Conference on Scale-Space.Isle of Skye,UK:[s.n.],2003.
  • 4Perona P,Malik J.Scale-space and Edge Detection Using Anisotropic Diffusion[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 5Donoho D L.Denoising by Soft-thresholding[J].IEEE Trans.onInformation Theory,1995,41(3):613-627.
  • 6Charbonnier P,Blanc-Feraud L,Auben G,et al.Two Deterministic Half-quadratic Regularization Algorithms for Computed Imaging[C]//Proc.of ICIP'94.Austin,USA:[s.n.],1994.
  • 7Steidl G,Weickert J,Brox T,et al.On the Equivalence of Soft Wavelet Shrinkage,Total Variation Diffusion.Total Variation Regularization,and SIDEs[J].SIAM Journal on Numerical Analysis,2004,42(2):686-713.
  • 8Steidl G,Weickert J.Relations Between Soft Wavelet Shrinkage and Total Variation Denoising[C]//Proc.of the 24th DAGM Symposium on Pattern Recognition.London,UK:[s.n.],2002.
  • 9Mrazek P,Weickert J.Rotationally Invariant Wavelet Shrinkage[C]//Proc.of DAGM'03.Berlin,Germany:Springer-Verlag,2003.
  • 10王海松,王伟.基于曲波变换和小波变换的图像去噪算法[J].计算机工程,2009,35(15):217-219. 被引量:6

共引文献25

同被引文献45

  • 1都基焱,赵炳爱,范晓虹,苏辉.SAR图像斑点噪声滤除方法应用研究[J].系统工程与电子技术,2004,26(8):1027-1029. 被引量:4
  • 2叶鸿瑾,张雪英,何小刚.基于小波变换和中值滤波的医学图像去噪[J].太原理工大学学报,2005,36(5):511-514. 被引量:22
  • 3Browning D R K.The weighted median filter[J].Communication ACM,1984,27(8):807-818.
  • 4Dong Yiqiu,Xu Shufang.A new directional weighted dedian filter for removal of randow-valued impulse noise[J].IEEE Signal Processing Lett,2007,14(3):193-196.
  • 5Candes E, Demanet L, Donoho D, et al. Fast discrete cur- velet transforms [ J ]. Multiscale Modeling and Simulation,2006,5 ( 3 ) :861-899.
  • 6Do M N, Vetterli M. The eontourlet transform: An efficient directional muhiresolution image representation [ J ]. IEEE Transactions on Image Processing, 2005,14 ( 12 ) : 2091 - 2106.
  • 7Guo Kanghui, Labate D. Optimally sparse muhidimension- al representations using shearlets [ J 1. SIAM Journal on Mathematical Analysis, 2007,39( 1 ) :298-318.
  • 8Lim Wang-Q. The discrete shearlet transform: A new di- rectional transform and compactly supported shearlet frames [ J]. IEEE Transactions on Image Processing, 2010, 19 (5) :1166-1180.
  • 9Zhang Fan, Yoo Yang Mo, Koh Liang Mong, et al. Non- linear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction[ J]. IEEE Transactions on Medical Ima- ging, 2007,26(2) :200-211.
  • 10Yu Jinhua, Wang Yuanyuan, Shen Yuzhong. Noise reduc- tion and edge defection via kernel anisotropic diffusion [ J ]. Pattern Recognition Letters, 2008,29(10) :1496-1503.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部