期刊文献+

一种估算锂电池SOC的新型方法 被引量:7

New method for estimating SOC of lithium battery
下载PDF
导出
摘要 SOC(荷电状态)的预测和估算是锂电池管理系统中的一个重要部分。根据GAAA算法充分利用了遗传算法和蚁群算法各自的优势,提出一种GAAA算法优化BP神经网络的SOC估算方法。使用MATLAB进行编程,将锂电池的实时工作电流、电压、温度、健康度、安时积分值作为输入,实现对SOC的估算。实验结果表明,该算法在估算精确度和运算速度上都优于传统的BP神经网络和基于遗传算法的BP神经网络。 The prediction and estimation of State Of Charge (abbreviated to SOC) is an important part of the lithium battery management system. According to the advantages and disadvantages of the genetic algorithm and the ant algorithm, this paper puts forward a method that the genetic algorithm is combined with ant algorithm to be GAAA algorithm to optimize the BP neu- ral network. In order to realize the SOC estimation, the input values should be the real-time working current, voltage, tempera- ture, the healthy degree of lithium battery and the value of ampere-hours integration. This method is implemented by program- ming based on MATLAB. Results show that this method has higher accuracy of prediction of SOC and faster operating speed than the traditional BP method and the BP neural network based on the genetic algorithm.
出处 《计算机工程与应用》 CSCD 2013年第6期249-252,共4页 Computer Engineering and Applications
基金 第三批教育部"大学生创新性实验计划"项目(No.101053028) 湖南省教育厅项目(No.10C1278)
关键词 锂电池 电池管理系统 荷电状态 遗传-蚂蚁算法(GAAA) 反向传播(BP)神经网络 lithium battery battery management system State Of Charge (SOC) Genetic Algorithm-Ant Algorithm (GAAA) Back Propagation(BP) neural network
  • 相关文献

参考文献12

二级参考文献56

  • 1张兆信.关于人工神经网络[J].河北软件职业技术学院学报,2005,7(1):45-46. 被引量:1
  • 2齐智,吴锋,陈实,于卿,王国庆.利用人工神经网络预测电池SOC的研究[J].电源技术,2005,29(5):325-328. 被引量:27
  • 3武飞周,薛源.智能算法综述[J].工程地质计算机应用,2005(2):9-15. 被引量:19
  • 4唐致远 薛建军 李建刚 等.锂蓄电池嵌入电极的放电过程机理[J].化学通报网络版,2001,4:0104-0104.
  • 5王永骥 涂健.神经网络控制[M].北京:机械工业出版社,1998..
  • 6[1]Chiasson J,Vairamohan B.Estimating the State of Charge of a Battery[C].AMER CONTR CONF.2003, 2863-2868.
  • 7[2]Pang S,Farrell J,Du J, barth M. Battery state-of-charge estimation[C].Proceedings of the American Control Conference.2001,1644-1649.
  • 8[3]Herman L N,Wiegman.High Efficiency Battery State Control and Power Capability Prediction[C].The European Electric Road Vehicle Association.EVS-15[C/CD],Brussels:1998.
  • 9[4]Power B, Pilutti T, Series Hybrid Dynamic Modeling and Control Law Synthesis[J].Ford Scientific Research TR SR, 1993.
  • 10[5]Barbarisi O, Canaletti R, Glielmo L, et al.State of Charge Estimator for NiMH Batteries[C].41st IEEE Conference on Decision and Control, 2002, 1739-1744.

共引文献299

同被引文献62

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部