期刊文献+

广义禁止模式

Generalized pattern avoidance
下载PDF
导出
摘要 从对经典禁止模式的探讨出发,定义了广义禁止模式这个新概念,证明了广义有禁排列在代数运算Γ下的不变性.进一步讨论了广义禁止模式中的一类特殊模式——231模式,并对231广义有禁排列进行了分类和组合计算.最后,提出了一个猜想.关于广义禁止模式的讨论可为有禁排列问题的研究发展提供更加广阔的空间. The notion of classical pattern avoidance is extended by defining a new kind of generalized pattern avoidance, and the invariance of generalized restricted permutations on the algebraic operation T is proved. Furthermore, one kind of the generalized pattern avoidance, that is, the pattern 231 is discussed. The classifications and combinatorial calculations for generalized 231 restricted permutations are given. At last, a conjecture is presented. The new generalized patterns avoidance may promote the research on restricted permutations.
作者 邓玉平 孔炤
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第2期306-309,共4页 Journal of Dalian University of Technology
基金 国家大学生创新性实验计划资助项目(2010675)
关键词 有禁排列 禁止模式 组合计数 restricted permutation pattern avoidance combinatorial enumeration
  • 相关文献

参考文献8

  • 1Knuth D E. The Art of Computer Programming Volume 1 : Fundamental Algorithms [M]. Boston: Addison-Wesley, 1969.
  • 2Knuth D E. The Art of Computer Programming Volume 3: Sorting and Searching [M]. Boston: Addison-Wesley, 1973.
  • 3Chow T, West J. Forbidden subsequences and Chebyshev polynomials [J]. Discrete Mathematics, 1999, 204(1-3) :119-128.
  • 4Bermini A, Liafa M B, Ferrari L. Some statistics on permutations avoiding generalized patterns [J]. Pure Mathematics and Applications, 2007, 18(3-4) : 223-237.
  • 5Mansour T. Restricted 1-3-2 permutations and generalized patterns [J]. Annals of Combinatorics, 2002, 6(1) :65-76.
  • 6Babson E, Steingrimsson E. Generalized permutation patterns and a classification of the Mahonian statistics [J]. Sminaire Lotharingien de Combinatoire, 2000(18) : B44b.
  • 7Claesson A, Linusson S. n! matehings, n! posets [C] // Proceeding of the American Mathematical Society. Nancy:DMTCS, 2010: 601-612.
  • 8Bousquet-m61ou M, Claesson A, Dukes M, et al. (2+2)-free posets, ascent sequences and pattern avoiding permutations [J]. Journal of Combinatorial Theory, Series A, 2010, 117(7):884-909.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部