期刊文献+

钢构件弯扭屈曲总势能方程的合理性分析 被引量:2

AN ANALYSIS ON RATIONALIZATION OF TOTAL POTENTIAL ENERGY EQUATION OF STEEL MEMBERS WITH FLEXURAL-TORSIONAL BUCKLING
原文传递
导出
摘要 为研究钢构件弯扭屈曲总势能方程的合理性,该文通过分析推导总势能方程的两个方法——应力法和应变法的基本过程,揭示了应变表达式和位移模式是影响总势能方程推导结果的两个关键因素,建立了这两个关键因素合理性的判定准则,并验证了准则的正确性。依据该文建立的准则,对两种典型位移模式和三种典型总势能方程进行了判定。结果表明:符拉索夫位移模式较Trahair位移模式更为合理,吕烈武等学者的总势能方程较Bleich的总势能方程和Trahair的总势能方程更为合理。最后,建议了推导钢梁临界弯矩Mcr设计公式应采用的总势能方程。 In order to study the rationalization of the total potential energy equation of steel members with flexural-torsional buckling, the deriving procedure of stress method and strain method is analyzed in this paper. It is tbund that the expressions of strains and displacement mode are the two primary factors that affect the results, then two criteria on the rationalization of the two primary factors are established, and the correctness of the two criteria is verified. By using the two criteria, two typical displacement modes and three typical total potential energy equations are judged. The conclusion showed that Vlasov's displacement mode is more reasonable than Trahair's, and Lfi's total potential energy equation is more rational than Bleich's and Trahair's. Finally, a total potential energy equation which should be adopted for deriving the design formula of critical moment Mcr is proposed.
出处 《工程力学》 EI CSCD 北大核心 2013年第3期82-88,共7页 Engineering Mechanics
基金 国家自然科学基金项目(50978128) 兰州大学中央高校基本科研业务费专项资金项目(lzujbky-2009-15) 兰州大学交叉学科青年创新研究基金项目(LZUJC200903) 甘肃省科技计划项目(1107RJYA078)
关键词 钢构件 总势能方程 合理性 应变表达式 位移模式 steel members total potential energy equation rationalization the expressions of strains displacement mode
  • 相关文献

参考文献10

二级参考文献21

  • 1F.柏拉希 同济大学钢木结构教研室(译).金属结构的屈曲强度[M].北京:科学出版社,1965..
  • 2Yong Lin Pi, Trahair N S, Rajasekaran S. Energy Equation For Beam Lateral Buckling [J]. J Struct. Engrg. ASCE, 1992, 118(6): 1462--1479.
  • 3Bleich F. Buckling strength of metal structure [M]. McGraw-Hill Book Co. Inc., 1952.
  • 4Trahair N S. Flexural - tosional buckling of structures [M]. Chap.3, E & Spon, 1993, 49--68.
  • 5Yang Yeong-Bin, William McGuire. Stiffness matrix for geometric nonlinear analysis [J]. J. Struct. Engrg. ASCE, 1986, 112(4): 853--877.
  • 6方山峰,武汉水利电力学院学报,1985年,3期
  • 7吕烈武,钢结构构件稳定理论,1983年
  • 8S P Timoshenko, J M Gere.Theory of elastic stability[M].2nd Edition, McGraw Hill, 1961.
  • 9M Anderson, N S Trahair.Stability of monosymmetric beams and cantilevers[J].Journal of Structure Division, ASCE, 1972, 98(1): 269-285.
  • 10C M Wang, S Kitipornchai.On stability of monosymmetric cantilevers[J].Engineering Structures, 1986, 8(3): 169-180.

共引文献716

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部