期刊文献+

车辐式屋盖结构的一种索力识别方法的误差研究 被引量:3

RESEARCH ON ERROR OF A CABLE FORCE ESTIMATION METHOD FOR SPOKE STRUCTURAL ROOFS
原文传递
导出
摘要 基于一种由静力位移测量值识别车辐式结构索力的方法,该文评估了位移测量误差对于索力识别结果的影响,用数值计算及理论推导得到了二者的关系。索力识别误差是位移测量误差的单调函数。在位移值远大于测量误差时,该函数接近线性,否则有明显的非线性。在误差幅值相同的情况下,选择不同的加载及测量方案,索力识别的精度是不同的:单位荷载产生的节点位移越大,索力识别结果的误差就越小。对多种加载-测量方案进行了比选,归纳了制定索力识别方案时应遵循的原则:加载方案应使结构的几何刚度发挥主要作用。对车辐式结构而言,在荷载总量一定的情况下,在半跨或1/4跨布置荷载能获得较好的索力识别结果。 Based on a cable force estimation method with static displacement for spoke structural roofs, the influence of displacement measurement error on the cable force estimation result is studied with numerical and theoretic analysis. Force estimation error is a monotone function of displacement measurement error. When the displacement is much larger than the measurement error, the function is almost linear, otherwise apparently nonlinear. With the same amplitude of displacement measurement error, the accuracy of cable force estimation varies remarkably due to load-measurement schemes. The error of force estimation result is small if the nodal displacement with respect to unit load is large. Several load-measurement schemes are compared, and the principle on making load-measurement scheme is to make structural geometric stiffness take primary effect. For spoke structures, half-span and quarter-span loads will achieve good force estimation results if the amount of loads is limited.
出处 《工程力学》 EI CSCD 北大核心 2013年第3期126-132,共7页 Engineering Mechanics
关键词 索结构 索力识别 误差 位移 预应力 解析法 有限元法 cable structures cable force estimation error displacement pre-stress analytic method finiteelement method
  • 相关文献

参考文献9

  • 1郭彦林,田广宇,王昆,张博浩.一种基于静力位移测量值的车辐式屋盖结构索力识别方法[J].工程力学,2013,30(2):96-103. 被引量:4
  • 2Sanayei M, Scampoli F S. Structure element stiffness identification from static test data [J]. Journal of Engineering Mechanics, 1991, 117(5): 1021-- 1035.
  • 3Sanayei M, Saletnik J M. Parameter estimation of structures from static strain measurements I : Formulation [J]. Journal of Structural Engineering, 1996, 22(5): 555--562.
  • 4Sanayei M, Saletnik J M. Parameter estimation of structures from static strain measurements II: Error sensitivity analysis [J]. Journal of Structural Engineering, 1996, 22(5): 563--572.
  • 5Banan M R, Hjelmstad K D. Parameter estimation of structure from static response I : Computational aspects[J]. Journal of Structural Engineering, 1994, 120(1): 3243--3258.
  • 6Banan M R, Hjelmstad K D. Parameter estimation of structure from static response II: Numerical simulation [J]. Journal of Structural Engineering, 1994, 120(1): 3259--3283.
  • 7Hjelmstad K D, Wood S L, Clark S J. Mutual residual energy method for parameter estimation in structures [J]. Journal of Structural Engineering, 1992, 118(1): 223-- 242.
  • 8Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1986, 22(4): 409--428.
  • 9Pellegrino S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures, 1990, 26(12): 1329-- 1350.

二级参考文献9

共引文献3

同被引文献27

  • 1邓华,姜群峰.环形张力索桁罩棚结构施工过程的形态分析[J].土木工程学报,2005,38(6):1-7. 被引量:10
  • 2任伟新,陈刚.由基频计算拉索拉力的实用公式[J].土木工程学报,2005,38(11):26-31. 被引量:126
  • 3RUSSELL J C,LARDNER T J.Experimental determination of frequencies and tension for elastic cables[J].Journal of Engineering Mechanics, ASCE, 1998, 24(10):1067-1072.
  • 4KIM B H, PARK T.Estimation of cable tension force suing the frequency-based system identification method[J].Journal of sound and Vibration, 2007, 304(3/4/5):660-676.
  • 5CEBALLOS M A,PRATO C A.Determination of the axial force on stay cables accounting for their bending stiffness[J].Journal of sound and Vibrationg, 2008, 317(1/2):127-141.
  • 6MA Haitao.Exact solutions of axial vibration problems of elastic bars[J].International Journal for Numerical Methods in Engineering, 2008, 75(2):241-252.
  • 7MEHRABI A B, TABATABAI H.A unified finite difference formulation for free vibration of cables[J].Journal of Structural Engineering, ASCE, 1998, 124(11):1313-1322.
  • 8ZUI H, SHINKE T, NAMITA Y.Practical formulas for estimation of cable tension by vibration method[J].Journal of Structural Engineering, ASCE, 1996, 122(6):651-656.
  • 9ARMIN B, HABIB T.Unified finite difference formulation for free vibration of cables[J].Journal of Structural Engineering, 124, 11:1313-1322.
  • 10YOZO Fujino.Design formulas for damping of a stay cable with a damper[J].Journal of Structural Engineering, 2008, 134(2):269-278.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部