期刊文献+

带刚臂空间梁元的几何非线性有限元分析

A GEOMETRICAL NONLINEAR FINITE ELEMENT ANALYSIS OF 3-D BEAM ELEMENT WITH RIGID ARMS
原文传递
导出
摘要 为解决应用空间梁元进行结构的几何非线性分析时所存在的相交处刚性连接问题,根据刚臂在受力后只有刚体运动而本身不变形的特点,将刚臂视为空间矢量,利用空间矢量有限转动公式及微分方法,导出了结构坐标系下刚臂两端的位移和杆端力的总量及增量关系。结合常规空间梁元非线性切线刚度矩阵,得到了两端带任意刚臂的空间梁元切线刚度矩阵显式表达式。依据此算法编制了相应的非线性有限元计算程序,对弯梁、框架等结构进行了空间几何非线性分析。计算结果表明:应用两端带任意刚臂的空间梁元可以很好地解决前面提到的问题,且其有限元分析格式与不带刚臂的空间梁元完全一致,具有很好的实用性。 In order to solve the problem of a rigid link when a 3-D beam element is applied to structural geometrical nonlinear analysis, the relationships of total amount and incremental for the displacement and the end force of ends of rigid arms in a global coordinate system are presented via a treating rigid arm as a spatial vector and then employing its finite rotation formula and differential method, based on the characteristics of the forced rigid ann having no deformation but rigid motion. The explicit expressions of the nonlinear tangent stiffness matrix of a 3-D beam element with rigid arms in both ends are obtained by Combining the traditional nonlinear tangent stiffness matrix of a 3-D beam element. A finite element program based on the algorithm is developed to analyze the geometric nonlinear behaviors of the curved beam and frame structures. Numerical results demonstrate that the proposed 3-D beam element can solve the structural analysis of a 3-D beam with rigid links. Moreover, this beam element is valid and practicable due to its consistent format with the general beam element without rigid arms.
出处 《工程力学》 EI CSCD 北大核心 2013年第3期276-281,共6页 Engineering Mechanics
基金 国家自然科学基金项目(51008037)
关键词 带刚臂空间梁元 几何非线性 切线刚度矩阵 空间矢量有限转动 微分方法 3-D beam element with rigid arms geometric non-linear tangent stiffness matrix finite rotation ofspace vector differential method
  • 相关文献

参考文献7

二级参考文献27

  • 1石洞,桥梁结构电算,1987年
  • 2朱伯芳,有限单元法原理与应用,1979年
  • 3钟万勰,计算结构力学,1989年
  • 4ARGYRIS J H. An excursion into large rotations [ J ]. Computer Methods in Applied Mechanics and Engineering, 1982,32(5) : 85-155.
  • 5RANKIN C C, BROGAN F A. An element independent eorotational procedure for the treatment of large rotations [ J ], Journal of Pressure Vessel Technology, 1986,108: 165-174.
  • 6CRISFIELD M A, MOITA G F. A unified co-rotational framework for solids, shells and beams[ J ]. International Journal of Solids and Structures, 1996,33(24) : 2 969-2 992.
  • 7HSIAO K, LIN W Y. Co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams[ J ].Computer Methods in Applied Mechanics and Engineering, 2000,188 (3):567-594.
  • 8FELIPPA C A, HAUGEN B. A unified formulation of small-strain corotational finite elements [ J ]. Theory Computer Methods in Applied Mechanics and Engineering, 2005,194(19) : 2 285-2 335.
  • 9BATHE K J, RAMM E, WILSON E L. Finite element formulations for large deformation dynamic analysis [ J ]. International Journal of Numerical Methods and Engineering, 1975,9 (2) : 353-386.
  • 10BATHE K J. An assessment of current finite element analysis of nonlinear problems in solid mechanics [ C ]//Numerical Solution of Partial Differential Equations. Maryland: University of Maryland, 1975.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部