期刊文献+

基于燃烧痕迹特征的火灾事故爆发点判断方法 被引量:1

Similar Background of Fire Detection Optimization Method Simulation
下载PDF
导出
摘要 研究火灾事故爆发点准确判断问题。火灾在燃烧过程中,时空上失去控制,火灾的烟雾、火焰在时空上发生了整体移动。初始爆发点特征也会发生、退化、移动。传统的判断方法多半是通过寻找火灾爆发初期的特征认定,完成火灾爆发点的判断的。一旦特征发生较为明显的移动,爆发地点也会发生较为明显的判断失误。提出利用动态能量燃烧痕迹特征的火灾事故爆发点判断方法。通过判断火灾发生过程中,燃烧能量的变化趋势,判断火灾发生的初始位置,排除特征移动的干扰。实验证明,动态方法实现了较为准确的判断火灾爆发点的认定,并提高了火灾检测效率。 Study the accurate location of the outbreak of fire accident points. The combustion process of fire is out of control in the time and space. This paper proposed a determination method of fire accident flashpoint with the char- acteristic of dynamic energy burn marks. In the process of fire, the change trend of the combustion energy and the in- itial position of the fires are by determined in order to exclude feature mobile interference. Experimental results show that the dynamic method achieves a more accurate judgment of the point of fire outbreaks, and improves the efficiency of the fire detection.
作者 欧萍 贺电
出处 《计算机仿真》 CSCD 北大核心 2013年第3期372-375,共4页 Computer Simulation
基金 贵州省2012年度科学技术基金项目(黔科合J字[2012]2021)
关键词 燃烧痕迹 事故爆发点 动态能量 Fire detection Frame differential PCA
  • 相关文献

参考文献6

二级参考文献18

  • 1王满家.锅炉炉膛安全保护装置应用状况分析[J].中国电力,1993,26(3):34-38. 被引量:5
  • 2KURIHARA.A Comustion Dianosis Method for Pulverized Coal Boiler Using Flame Image Recognition[J].IEEE-EC,2006(2):110-113.
  • 3NAKAYAMA M Image Analysis Combustion Flames[J].Thermal and Nuclear Power,2007(5):224-247.
  • 4HOSHINO M.Combustion Monitoning System Appied Image Data Procecssing[J].Themal and Nuclear Power,2007(12):97-103.
  • 5S Haritaoglu,D Harwood and L S Davis.W4:Real-Time Surveillance of People and Their Activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000.
  • 6H Tao,H S Sawhney and R Kumar.A Sampling Algorithm for Tracking Multiple Objects[C].Proc.IEEE Workshop Vision Algorithms,1999.
  • 7D Harwood and L S Davis.Multiple people detection and tracking using silhouettes[J].In IEEE International Workshop on Visual Surveillance,June 1999.6-13.
  • 8N Oliver,B Rosario and A Pentland.A Bayesian computer vision system for modeling human interactions[C].International Conference on Vision Systems,January 1999.
  • 9Baumberg and D Hogg.An efficient method for contour tracking using active shape models[J].In IEEE Workshop on Motion of Non-rigid and Articulated Objects,November 1994.194-199.
  • 10A J Lipton,H Fujiyoshi and R S Patil.Moving target classification and tracking from real-time video[J].In DARPA Image Understanding Workshop,November 1998.129-136.

共引文献68

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部