期刊文献+

基于图的有监督判别投影 被引量:1

Graph-based supervised discriminant projection
下载PDF
导出
摘要 无监督鉴别投影没有利用样本类别标签,所以没有利用样本的鉴别信息。该文在无监督鉴别投影算法的基础上提出了基于图的有监督判别投影(graph-based supervised discriminant projection,GSDP)算法,利用吸引图和排斥图设计目标函数进行特征抽取,建立吸引图的目的是使同类但不是近邻的样本互相吸引,建立排斥图的目的是击退近邻但不是同类的样本。在Feret,Yale和Orl这3个标准人脸库上的大量实验表明了该算法的有效性。 Unsupervised discriminant projection algorithm is a kind of supervised algorithm, which does not use label informa tion, so it does not use discriminant information of samples. A graphbased supervised discriminant projection algorithm based on unsupervised discriminant projection algorithm is presented. The algorithm use repulsion graphs and affinity graphs to extract feature. The purpose of using affinity graphs is to make two samples which are in the same class but not nearby attractive and the purpose of constracting repulsion graphs is to repel two samples which are nearby and in different class. The experiments on Fe ret, Yale and Orl face image datebase show the effectiveness of the proposed algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第3期970-973,988,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61175111) 江苏省自然科学基金项目(BK2009184) 江苏省高校自然科学基金项目(10KJB510027)
关键词 降维 无监督鉴别投影 吸引图 排斥图 人脸识别 dimensionality reduction unsupervised discriminant projection affinity graphs repulsion graphs face recognition
  • 相关文献

参考文献10

  • 1Myoung Soo Park, Jin Young Choi. Theoretical analysis on feature extraction capability of class-augmented PCA [J]. Pat- tern Reeognition, 2009, 42 (11): 2353-2362.
  • 2Li HF, Jiang T, Zhang KS. Efficient robust feature extraction by maximum margin criterion [J]. IEEE Trans on Neural Net- works, 2006, 7 (1): 157-165.
  • 3LuGui-Fu, ZouJian, Wang Yong Incremental completeLDAfor face recognition [J].Pattem Recognition, 2012, 45 (7): 2510-2521.
  • 4Lu Gui-Fu, Zou Jian, Wang Yong. Incremental learning of complete linear discriminant analysis for face recognition [J]. Knowledge-Based Systems, 2012, 31 (1): 19-27.
  • 5Ching Wai-Ki, Chu Delin, Liao Li-Zhi, et al. Regularized or- thogonal linear discriminant analysis[J]. Pattern Recognition, 2012, 45 (7): 2719-2732.
  • 6Yu WW, Teng XL, Liu CQ. Face recognition using discrimi- nant locality preserving projections[J]. Image and Vision Computing, 2006, 24 (3): 239-248.
  • 7Yang LP, Gong WG, Gu XH, et al. Null space discriminant locality preserving projections for face recognition[J]. Neuro-computing, 2008, 71 (18)~ 3644-3649.
  • 8杨利平,龚卫国,辜小花,李伟红,杜兴.完备鉴别保局投影人脸识别算法[J].软件学报,2010,21(6):1277-1286. 被引量:34
  • 9Yang Jian, Zhang David. Globally maximizing, locally minimi- zing: Unsupervised discriminant projection with applications to face and palm biometrics [J]. IEEE Trans Pattern Anal Ma- chine Intell, 2007, 29 (4): 650-664.
  • 10Kokiopoulou E, Saad Y. Enhanced graph-based dimensionali- ty reduction with repulsion Laplaceans [J]. Pattern Recogni- tion, 2010, 40 (1): 2392-2402.

二级参考文献4

共引文献33

同被引文献29

  • 1JAVIER R D S,QUINTEROS J. Illumination compensation and normalization in eigenspace-based face recognition:a comparative study of different pre-processing approaches[J].Pattern Recognition Letters,2008,29(14):1966-1979.
  • 2NABATCHIAN A,ABDEL-RAHEEM E,AHMADI M. Illumination invariant feature extraction and mutual-information-based local matching for face recognition under illumination variation and occlusion[J].Pattern Recognition,2011,44(10):2576-2587.
  • 3ADINI Y,MOSES Y,ULLMAN S. Face recognition:the problem of compensating for changes in illumination direction[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):721-732.
  • 4TURK M A,PENTLAND A P. Face recognition using eigenfaces[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.] :IEEE Press,1991:586-591.
  • 5BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6GEORGHIADES A S,BELHUMEUR P N,KRIEGMAN D J. From few to many:illumination cone models for face recognition under variable lighting and pose[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
  • 7BASRI R,JACOBS D W. Lambertian reflectance and linear subspaces[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(2):218-233.
  • 8SHAN Shi-guang,GAO Wen,CAO Bo,et al. Illumination normalization for robust face recognition against varying lighting conditions[C] //Proc of IEEE International Workshop on Analysis and Modeling of Faces and Gestures. [S. l.] :IEEE Press,2003:157-164.
  • 9GAO Yong-sheng,LEUNG M K H. Face recognition using line edge map[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(6):764-779.
  • 10SHASHUA A,RIKLIN-RAVIV T. The quotient image:class-based re-rendering and recognition with varying illuminations[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(2):129-139.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部