期刊文献+

基于多重次渐消因子的强跟踪UKF姿态估计 被引量:21

Attitude estimation of strong tracking UKF based on multiple fading factors
下载PDF
导出
摘要 针对应用于飞行器姿态确定中的乘性扩展卡尔曼滤波(multiplicative extended Kalman filter,MEKF)存在精度低、鲁棒性差的缺点,提出了一种基于多重次渐消因子的强跟踪无迹卡尔曼滤波(multiple fading factors strong tracking unscented Kalman filter,MSTUKF)算法。该滤波算法克服了单渐消因子对多变量跟踪能力差的局限性,通过引入两个多重次渐消因子对预测误差协方差阵进行调整,使得不同的滤波通道具有不同的调节能力,保证预测误差协方差阵的对称性,从而实现滤波算法强跟踪性。仿真结果表明,MSTUKF的滤波精度和鲁棒性均明显优于MEKF,能够更好地满足工程应用对精度和鲁棒性的要求。 Considering that the multiplicative extended Kalman filter (MEKF) has low accuracy and poor robustness in the application of spacecraft attitude determination, a strong tracking unscented Kalman filter algorithm based on multiple fading factors (MSTUKF) is presented. The algorithm overcomes the limitation of single fading factor for multivariable systems, and introduces two multiple fading factors to adjust the prediction error covariance, which can make the different filter channels possess different adjustment ability, and ensure the symmetry of the prediction error covariance matrix, thus realizing the strong tracking of the filtering algorithm. Simulation results show that MSTUKF is superior to MEKF in precision and robustness, and satisfies the requirements of precision and robustness which are emphasized in projects.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第3期580-585,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61104036)资助课题
关键词 姿态确定 渐消因子 强跟踪 无迹卡尔曼滤波 鲁棒性 attitude determination fading factor strong tracking unscented Kalman filter robustness
  • 相关文献

参考文献5

二级参考文献40

  • 1徐景硕,秦永元,彭蓉.自适应卡尔曼滤波器渐消因子选取方法研究[J].系统工程与电子技术,2004,26(11):1552-1554. 被引量:68
  • 2何英姿,谌颖,韩冬.基于交会雷达测量的相对导航滤波器[J].航天控制,2004,22(6):17-20. 被引量:12
  • 3张树春,胡广大,刘思华.关于UKF方法的新探索及其在目标跟踪方面的应用[J].控制理论与应用,2006,23(4):569-574. 被引量:7
  • 4LI Maohai,HONG Bingrong,LUO Ronghua.Mobile Robot Simultaneous Localization and Mapping Using Novel Rao-Blackwellised Particle Filter[J].Chinese Journal of Electronics,2007,16(1):34-39. 被引量:11
  • 5Smith R, Self M, Cheeseman E Estimating uncertain spatial relationships in robotics[M]//Autonomous robot vehicles. New York, NY, USA: Springer-Verlag, 1990: 167-193.
  • 6Australian Centre for Field Robotics. Source Code[DB/OL]. (2008-06-10) [2009-03-30]. http://www-personal.acfr.usyd. edu.au/tbailey/.
  • 7Julier S, Uhlmann J, Durrant-Whyte H E A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 8Sunderhauf N, Lange S, Protzel E Using the unscented Kalman filter in mono-SLAM with inverse depth parameterization for autonomous airship control[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2007: 1-6.
  • 9Julier S J. The scaled unscented transformation[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2002: 4555- 4559.
  • 10Wang X, Zhang H. A UPF-UKF framework for SLAM[C]// IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 1664-1669.

共引文献203

同被引文献178

引证文献21

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部