期刊文献+

小波变换与概率神经网络的心电图分类 被引量:8

An electrocardiogram classification approach based on wavelet transform and probabilistic neural network
下载PDF
导出
摘要 提出了一种实时高效的心电图分类理论与方法。首先对心电图进行六尺度小波分解,将含有主要噪声的尺度进行系数置零,再将剩余层进行小波重构,从而达到除噪的目的。利用数学形态学定位心电图P、Q、R、S、T波位置,并提取计算各波间距离和斜率等12个特征值作为概率神经网络的输入向量,从而实现心电图的六分类。 An effective electrocardiogram(ECG) classification approach based on wavelet de-noising and probabilistic neural net- is proposed. Firstly the ECG signal is taken six scaling wavelet decomposition.The coefficient of the scales, which contain noise, are set to zero, inverse the wavelet transform. The mathematical morphology is used to find the positions of P,Q,R,S T wave, then the 12 feature values are taken as the input of probability neural network to realize the six classification of ECG.
出处 《电子技术应用》 北大核心 2013年第3期136-137,140,共3页 Application of Electronic Technique
关键词 心电图 分类 小波变换 概率神经网络 eleetroeardiogram(ECG) classification wavelet transform probabilistic neural network
  • 相关文献

参考文献7

  • 1刘金江,王春光,孙即祥.基于稀疏分解和神经网络的心电信号波形检测及识别[J].信号处理,2011,27(6):843-850. 被引量:3
  • 2MELGANI F,BAZ1 Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization[J].IEEE Transactions on Intormation Technology in Biomedicine, 2008,12(5):667-677.
  • 3李坤阳,胡广书.基于心电图分析的心律失常分类[J].清华大学学报(自然科学版),2009(3):416-418. 被引量:17
  • 4凌朝东,刘蓉,钱江,蔡灿辉.基于5/3提升小波变换的心电信号压缩算法及VLSI实现[J].信号处理,2010,26(6):930-935. 被引量:9
  • 5ZHANG C F, BAE T W.VLSI Friendly ECG QRS com- plex detector for body sensor networks[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2012,2(1):52-59.
  • 6BENMALEK M. CHAREF A. Digital fl-actional order oper- ators for R-~ave detection in electt'ocardiogram signal[J]. IET Signal Processing, 2009,5(3):381-391.
  • 7LIN C, MAILHES C, TOURNERET J Y. P- and T-Wave delineation in ECG signals using a bayesian approach and a partially collapsed gibbs sampler[J]. IEEE Transactions on Biomedical Engineering, 2010,57(12):3242-3255.

二级参考文献29

  • 1刘少颖,卢继来,郝丽,胡广书.基于数学形态学和小波分解的QRS波群检测算法[J].清华大学学报(自然科学版),2004,44(6):852-855. 被引量:19
  • 2高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:93
  • 3HU Y H, Palreddy S, Tompkins W J. A patient-adaptable ECG beat classifier using a mixture of experts approach[J]. IEEE Trans Biomedical Engineering, 1997, 44(9):891 - 900.
  • 4Lagerholm M, Peterson C. Clustering ECG complexes using hermite functions and self-organizing maps [J]. IEEE Trans Biomedical Engineering, 2000, 47(7) : 838 - 848.
  • 5Osowski S, Linh T H, Markiewicz T. Support vector machine-based expert system for reliable heartbeat recognition[J].IEEE Trans Biomedical Engineering, 2004, 51(4): 582-589.
  • 6Chazal P, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J]. IEEE Trans Biomedical Engineering, 2004, 51(7): 1196-1206.
  • 7Tsipouras M G, Fotiadis D I. An arrhythmia classification system based on the RR-interval signal[J]. Artificial Intelligence in Medicine, 2005, 33 : 237 - 250.
  • 8Arand P A, Post W L. Method and apparatus for classifying heart beats in an ECG waveform[P]. United States Patent, 5817027. 1998-10-06.
  • 9Moody G, Mark R. The MIT-BIH arrhythmia database[EB/OL]. (2005-7-22). http: //ecg. mit. edu/.
  • 10Kohler B U, Hennig C, Orglmeister R. The principles of software QRS detection [J]. IEEE Engineering in Medicine and Biology, 2002:42-57.

共引文献26

同被引文献59

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部