期刊文献+

一种改进的基于指数平滑神经网络模型的时间序列预测方法 被引量:8

An Improved Time Series Forecasting Method Based on Ewma-Ann Mixed Model
原文传递
导出
摘要 基于指数平滑模型与误差反传神经网络法提出了一个改进的时间序列预测方法.将神经网络模型移植入指数加权滑动平均模型中,充分考虑了时间序列的部分线性性和非线性性对预测结果的影响,是传统的混合模型的一个更合理的改进.最后通过对上证指数时间序列的实证分析,以预测均方误差为检验标准,对五种常用的时间序列预测模型进行了预测精度的比较,而且经验证所提出的改进的时间序列预测模型相对来说具有更小的预测均方误差. The paper proposed an improved method of forecasting time series based on exponential smoothing and BP neutral network. The method had sufficiently considered influence of the linear and nonlinear part of time series on prediction result, which is a more reasonable improvement of traditional hybrid model. In the last part of the paper, we predicted time series of Shanghai composite closing index by using five models and compared the forecasting accuracy of each model by mean square error of each model as standards. Furthermore, a relative most mean square error had computed from the proposed time series forecasting method.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第5期20-28,共9页 Mathematics in Practice and Theory
基金 上海市科研创新基金(12YZ168)
关键词 指数平滑 神经网络 MEA模型 IEA模型 预测 时间序列 Ewma neural net MEA model IEA model Forecast time series
  • 相关文献

参考文献15

  • 1Box G E P and Jenkins G M. Time series analysis-Forecasting and Control[M]. San Francisco, Holden-Day, 1970.
  • 2Makndakis S, Wheelwright S C and Hyndman R J. Forecasting methods and applications[J]. New York, John Wiley & sons, 1998.
  • 3PACELLA M, SEMERARO Q. Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring[J]. Computers & Industrial Engineering, 2007, 52(4): 502-520.
  • 4Bhadeshia H K D H. Neural Networks in Materials Science[C]//ISIJ International, 1999, 39(10): 966-979.
  • 5Egmont-Petersen M, de Ridder D, Handels H. Image processing with neural networks- a review[J]. Pattern Recognition, 2002, 35 (10): 2279-2301.
  • 6BATES J M, GRANGER C W J. The combination of forecasts[J]. Operational Research Quarterly, 1969, 20(1): 451-468.
  • 7Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neuro computing, 203, 50: 159-175.
  • 8Jung-Hua Wang and Jia-Yann Leu. Stock market trend prediction using ARIMA-based Neural Networks[J].
  • 9Mehdi Khashei, Mehdi Bijari. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting[J]. Applied Soft Computing, 2011(11): 2664-2675.
  • 10Roselina Sallehuddin, Siti Mariyam Shamsuddin. Hybridization model of linear and nonlinear time series data for forecasting[J]. Second Asia InternationalConference on Modelling Simulation, 2008, 597-602.

二级参考文献4

共引文献4

同被引文献49

  • 1黄纬,温志萍,程初.云计算中基于K-均值聚类的虚拟机调度算法研究[J].南京理工大学学报,2013,37(6):807-812. 被引量:17
  • 2陈湛匀.可行而有效的指数平滑法[J].外国经济与管理,1985,7(8):36-38. 被引量:3
  • 3钟诗胜,朴树学,丁刚.改进BP算法在过程神经网络中的应用[J].哈尔滨工业大学学报,2006,38(6):840-842. 被引量:18
  • 4罗泽举,宋丽红,薛宇峰,朱思铭.一类基于SVM/RBF的气象模型预测系统[J].计算机工程,2006,32(21):31-32. 被引量:12
  • 5门玉明,胡高社,刘玉海.指数平滑法及其在滑坡预报中的应用[J].水文地质工程地质,1997,24(1):16-18. 被引量:17
  • 6Gardner Jr E S, Diaz-Saiz J. Exponential smoothing in the telecommunications data[J].International Journal of Foreca sting,2008,24(1): 170-174.
  • 7Knoth S, Steinmetz S. EWMA p charts under sampling by variables[J].International Journal of Production Research, 2013 (ahead-of-print): 1-13.
  • 8Wei J, Mouzakitis A, Wang J, et al. Vehicle windscreen wiper mathematical model development and optimisation for model based hardware-in-the-loop simulation and control[C]//Automation and Computing (ICAC),2011 17th International Conference on. IEEE, 2011:207-212.
  • 9OWEN J S, ECCLES B J, CHOO B S, et al. The applica- tion of auto-regressive time series modelling for the time-fre- quency analysis of civil engineering structures [ J ]. Engi- neering Structures, 2001, 23 (5) : 521-536.
  • 10LIU Hui , TIAN Hongqi, LI Yanfei. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[ J]. Applied Energy, 2012, 98 : 415-424.

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部