期刊文献+

求收益模糊的贝叶斯纳什均衡解的结构元方法

Solution of Bias Static Game with Fuzzy Profit by Making Use of the Method of Structured Element
原文传递
导出
摘要 主要目的是利用结构元方法求解收益模糊的贝叶斯纳什均衡.首先,在原有结构元理论基础上,给出了多元模糊值函数的定义及其结构元表示;其次,给出了在混合策略下,收益模糊的贝叶斯纳什均衡的定义,并证明了其存在性定理;然后,利用结构元理论,将该博弈模型等价地转化为一个经典的博弈模型,简化了原问题的求解.最后的应用实例说明了该方法的有效性. The main goal of this paper is to solve bias static game with fuzzy profit by making use of the structured element theory. Firstly, in the based on the original structural element theory, the authors define the multiple fuzzy value function, and use structural element to express it; secondly, under the mixed strategy, the authors define the bias Nash equilibrium with fuzzy profit and proof its existence; then, the authors transform bias static game with fuzzy profit into a classical bias static game by using the structured element theory, and simplify the original problem. At last, the application example illustrates the effectivity.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第5期149-154,共6页 Mathematics in Practice and Theory
基金 教育部高校博士学科点专项科研基金(20102121110002)
关键词 模糊收益 贝叶斯静态博弈 结构元 Fuzzy profit Bias static game Structured element
  • 相关文献

参考文献6

  • 1Compos L. Fuzzy linear Programming models to solve fuzzy matrix games[J]. Fuzzy Sets and Sys- tems, 1989, (32): 275-289.
  • 2I Xu L, Zhao R, Shu T. Three equilibrium strategies for two-person zero-sum game with fuzzy pay- offs[J]. Lecture Notes in Artificial Intelligence, 2005, (3613): 350-354.
  • 3Nishizaki I, Sakawa M. Fuzzy and Multiobjective Games for Confict Resolution[M]. Physica-Verleg, Heidelberg, 2001.
  • 4Maeda T. Characterization of the equilibrium strategy of the two-person zero-sum game with fuzzy payoff[J]. Fuzzy Sets and Systems, 2003, (139): 283-296.
  • 5郭嗣琮.基于模糊结构元理论的模糊分析数学原理[M].沈阳:东北大学出版社,2004.
  • 6刘海涛,郭嗣琮.基于结构元方法的变量模糊的线性规划[J].系统工程理论与实践,2008,28(6):94-99. 被引量:18

二级参考文献12

  • 1郭嗣琮.模糊实数空间与[-1,1]上同序单调函数类的同胚[J].自然科学进展,2004,14(11):1318-1321. 被引量:53
  • 2金毅,达庆利,徐南荣.变量模糊的多目标模糊线性规划问题研究[J].系统工程学报,1995,10(2):24-32. 被引量:11
  • 3郭嗣琮.[-1,1]上同序单调函数的同序变换群与模糊数运算[J].模糊系统与数学,2005,19(3):105-110. 被引量:57
  • 4张增科.模糊数学在自动化技术中的应用[M].北京:清华大学出版社,1997..
  • 5Zimmermann H J. Fuzzy programming and linear programming with several objective functions[J]. Fuzzy Sets and Systems, 1978, 1:45 - 55.
  • 6Verdegay J L. Fuzzy mathematical programming[ C]//M. M. Gupta and E. Sanchez(eds. ), Fuzzy Information and Decision Process, 1982, 231 - 237.
  • 7Lee E S, Li R J. Comparison of fuzzy numbers based on the probability measure of fuzzy events[J]. Comp Math Applic, 1988, 15: 887 - 896.
  • 8Chen S H. Ranking fuzzy numbers with maximizing set and minimizing sets[J]. Fuzzy Sets and Systems, 1985, 17: 113- 129.
  • 9Yuan Y. Criteria for evaluating fuzzy ranking methods[J]. Fuzzy Sets and Systems, 1991, 44:139 - 157.
  • 10Buckley J J. Solving possibilistic linear programming problems[J]. Fuzzy Sets and Systems, 1989, 31:329 - 341.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部