期刊文献+

一类具脉冲效应的p-Laplace系统周期解的存在性 被引量:2

Periodic Solutions for a Class of p-Laplacian Systems with Impulsive Effects
原文传递
导出
摘要 通过利用临界点理论中的极小极大方法,考虑一类具脉冲效应的p-Laplace系统周期解的存在性,获得了一些新的存在性结果,所得结果推广并改进了某些已有的结果. By applying minimax methods in critical point theory, existence results of periodic solutions are obtained for a class of p-Laplacian systems with impulsive effects. The results obtained generalize some known works.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第5期247-256,共10页 Mathematics in Practice and Theory
基金 广西自然科学基金(2012GXNSFAA053014) 广西教育厅科研项目(201202ZD080 201203YB093) 桂林航天工业学院科研项目(X12Z003)
关键词 周期解 极小极大方法 p-Laplace系统 脉冲效应 periodic solutions minimax methods p-Laplacian systems impulsive effects
  • 相关文献

参考文献12

  • 1Jebelean P, Morosanu G. Ordinary p-Laplacian systems with nonlinear boundary conditions [J]. J Math Anal Appl, 2006, 313: 738-753.
  • 2Xu B, Tang C L. Some existence results on periodic solutions of ordinary p-Laplacian systems [J]. J Math Anal Appl, 2007, 333: 1228-1236.
  • 3Tang X H, Xiao L. Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential [J]. Nonlinear Anal, 2009, 71: 1124-1132.
  • 4Chen P, Tang X H. Existence of solutions for a class of p-Laplacian systems with impulsive effects [J]. Journal of Taiwanses Mathematics, 2012, 16: 803-828.
  • 5Nieto J J, O'Regan D. Variational approach to impulsive differential equations[J]. Nonlinear Anal 2009, 10: 680-690.
  • 6Sun J T, Chen H B, Yang L. Variational methods to fourth-order impulsive differential equations [J]. J Appl Math Comput, 2011, 35: 323-340.
  • 7Tian Y, Ge W G. Applications of variational methods to boundary value problem for impulsive differential equations [J]. Proc Edinburgh Math Soc, 2008, 51: 509-527.
  • 8Zhou J W, Li Y K. Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects [J]. Nonlinear Anal, 2009, 71: 2856-2865.
  • 9Sun J T, Chen H B, Yang L. The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method [J]. Nonlinear Anal, 2010, 73: 440-449.
  • 10Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations [M]. Providence: American Mathematical Society, 1986.

同被引文献16

  • 1Mawhin J. Some bondary ~lue problems for Hartman-type perturbations of the ordinary vactor p- Laplacian[J]. Nonlinear Anal, 2000, 40(6): 497-503.
  • 2Li C, Ou Z Q, Tang C L. Periodic solutions for non-autonomons second-order differential systems with (q, p)-Laplacian[J]. Electronic Journal of Differential Equations, 2014, 64(2): 1-13.
  • 3Xu B, Tang C L. Some existence results on periodic solutions of ordinary p-Laplacian systems[J]. J Math Anal Appl, 2007, 333(2): 1228-1236.
  • 4Wang Z Y, Zhang J H. Periodic solutions of nonautomons second orderr systems with p-Laplacian[J]. Elec- tronic J Differential Equations, 2009, 17(1): 1-12.
  • 5Zhang L, Ge W G. Periodic solutions for a kind of p-Laplacian Hamiltonian systems[J]. Bull Korean Math Soc, 2010, 47(2): 355-367.
  • 6Zhang X Y, Tang C L. Periodic solutions for an ordinary p-Laplacian system[J]. Taiwan Residents Journal of Mathematics, 2011, 33(3): 1369--1396.
  • 7Zhou J W, Wang Y N, Li Y K. Existence and multiplicity of solutions for some second-order systems on time scales with impulsive effects[J]. Boundary Value Problems, 2012, 148(1): 1-26.
  • 8Zhou J W, Li Y K. Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects[J]. Nonlinear Anal, 2010, 72(3): 1594-1603.
  • 9Vicoria O, Tania P. Variational approach to second-order impulsive dynamic equations on time scales[J]. Boundary Value Problems, 2013, 119(3): 1-15.
  • 10Nieto J J, O'Regan D. Variational approach to impulsive differential equations[J]. Nonlinear Anal, 2009(10): 680-690.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部