期刊文献+

肝移植受者他克莫司血药浓度早期预测方案及评估 被引量:5

Establishment and evaluation of early prediction of tacrolimus concentration in liver transplantation recipients
原文传递
导出
摘要 目的:建立人工神经网络用于估算他克莫司血药浓度。方法:收集36例肝移植受者口服他克莫司的150份稳态全血浓度数据,采用遗传算法配合动量法优化网络参数,建立人工神经网络。结果:人工神经网络平均预测误差(MPE)与平均绝对误差(MAE)分别为0.05±3.01ng·mL-1和2.09±2.12ng·mL-1,78.3%血药浓度数据绝对预测误差≤3.0ng·mL-1。人工神经网络准确性及精密度优于多元线性回归。结论:人工神经网络预测可用于预测他克莫司血药浓度。 OBJECTIVE To establish a prediction method for tacrolimus concentration in liver transplantation recipients by artificial intelligence. METttODS 150 tacrolimus concentration samples from 36 Chinese liver transplantation recipients were collected. Artificial neural network (ANN) was established after that network parameters were optimized by using momentum method combined with genetic algorithm. Furthermore,the performance of ANN was compared with that of multiple linear re gression (MLR). RESULTS The mean prediction error and mean absolute prediction error of ANN were 0. 05 + 3.01 ng,mL-1 and 2. 09 + 2. 12 ng. mL-~ , respectively. The absolute prediction error of 78. 3~ of testing data sets was less than 3. 0 ng. mL- t. Accuracy and precision of ANN was superior to that of MLR. CONCLUSION ANN was suitable to predict tacrolimus concentration.
出处 《中国医院药学杂志》 CAS CSCD 北大核心 2013年第5期381-385,共5页 Chinese Journal of Hospital Pharmacy
关键词 他克莫司 肝移植 人工神经网络 tacrolimus liver transplantatiom artificial neural network
  • 相关文献

参考文献20

  • 1Wallemacq PE,Reding R. FK506 (tacrolimus), a novel immu nosuppressant in organ transplantation: clinical, biomedical, and analytical aspects [J]. Clin Chem, 1993, 39 (11 Pt 1):2219- 2228.
  • 2Jain A, Brody D, Hamad I, et al. Conversion to neoral for neu rotoxicity after primary adult liver transplantation under tacrolimus[J]. Transplantation,2000,69(1) : 172-176.
  • 3陈小全,周鲁,苏怡,左之利,赵蔡斌.神经网络及其在药动学和药效学中的应用[J].西南民族学院学报(自然科学版),2001,27(1):84-87. 被引量:4
  • 4Goren S, Karahoca A, Onat FY, et al. Prediction of cyclospo fine A blood levels: an application of the adaptive network based fuzzy inference system (ANHS) in assisting drug thera py[J]. Eur J Clin Pharmacol, 2008,64(8) : 807-814.
  • 5Kang SH, Poynton MR, Kim KM, et al. Population pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis[J]. Br J Clin Pharmacol, 2007,64(1):3-13.
  • 6Yamamura S, Kawada K, Takehira R, et al. Artificial neural network modeling to predict the plasma concentration of aminoglycosides in burn patients[J]. Biomed Pharmacother, 2004, 58(4):239-244.
  • 7任斌,何秋毅,许琼,王长希,陈杰,郑志华,黎曙霞,陈孝.人工神经网络预测肾移植受者霉酚酸体内暴露药量[J].药学学报,2009,44(12):1397-1401. 被引量:17
  • 8李长平,职心乐,刘晓红,崔壮,魏风江,柯慧,李妍,马骏.AIC结合最优子集法构建logistic回归模型在预测2型糖尿病并发末梢神经病变中的应用[J].中国卫生统计,2010,27(6):594-597. 被引量:9
  • 9Sheiner LB, Beal SL. Some suggestions for measuring predic tive performance[J]. J Pharmacokinet Biopharm, 1981,9(4): 503-512.
  • 10Wallemacq PE, Verbeeck RK. Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients[J]. Clin Pharmaeokinet, 2001,40 (4) : 283-295.

二级参考文献34

共引文献83

同被引文献92

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部