期刊文献+

小子样正态寿命型IC的可靠性评估

Reliability Evaluation of IC with Small Sample from Normal Distribution
下载PDF
导出
摘要 面对集成电路(IC)在寿命试验中难以得到大量失效数据的小子样情形,提出了基于最小二乘支持向量机(LSSVM)的小子样正态寿命型IC可靠性评估方法。该方法的主要思想是基于寿命试验数据建立最小二乘支持向量机回归模型,根据该模型计算出正态分布的参数,从而进行可靠性评估。用蒙特卡罗方法研究了截尾失效情况下该方法在正态寿命型IC平均寿命评估应用中的可行性,同时与常用的最小二乘回归(LSR)法和极大似然估计(MLE)法相比,结果表明,基于LSSVM的方法能更精确地反映小子样下IC的可靠性,能为评估小子样正态寿命型IC的可靠性提供一种新的有效途径。 In view of the small failure data samples obtained from life test of electronic components, a reliability evaluation method based on least squares support vector machine (LSSVM) was proposed, which can be used to evaluate the reliability of electronic components with small sample when the failure distributions were assumed to be normal distribution. Based on the failure data, an LSSVM model can be constructed, and the normal distribution parameters can be evaluated by the LSSVM model, the reliability can be evaluated accordingly. In addition, Monte Carlo simulations were carried out to demonstrate the effectiveness of the LSSVM evaluation method in evaluating reliability when dealing with the small sample censored failure data from the normal distribution. Both of least squares regression (LSR) and maximum-likelihood estimation (MLE) were also compared with LSSVM evaluation method. The results show that LSSVM evaluation method has higher accuracy and can provide a new effective way for evaluating the reliability of small samples IC, when dealing with censored failure data from the normal distribution.
出处 《半导体技术》 CAS CSCD 北大核心 2013年第3期227-230,共4页 Semiconductor Technology
关键词 最小二乘支持向量机 可靠性评估 正态分布 平均寿命 集成电路 least squares support vector machine (LSSVM) reliability evaluation normaldistribution mean time to failure integrated circuit (IC)
  • 相关文献

参考文献11

  • 1KUO W, TEP S. An exploratory study of a neural network approach for reliability data analysis [ J ]. Quality and Reliability Engineering International, 1995, 11 (2): 107-112.
  • 2TOUSSAINT U V, GORI S, DOSE VI Invariance priors for Bayesian feed-forward neural networks [ J]. Neural Networks, 2006, 19 (10): 1550-1557.
  • 3GOULERMAS J Y, LIATSIS P, ZENG X J, et al. Density-driven generalized regression neural networks (DD-GRNN) for function approximation [ J ]. IEEE Transactions on Neural Networks, 2007, 18 ( 6 ) : 1683 - 1696.
  • 4VAPNIK V N. Statistical learning theory [ M ]. New York: John Wiley&Sons, 1998.
  • 5VIEIRA D A, TAKAHASHI R H, PALADE V, et al. The Q-norm complexity measure and the minimum gradient method: a novel approach to the machine learning structural risk minimization problem [ J]. IEEE Transactions on Neural Networks, 2008, 19 ( 8 ) : 1415 - 1430.
  • 6邹心遥,姚若河.支持向量机在小子样IC可靠性评估中的应用[J].华南理工大学学报(自然科学版),2009,37(1):23-26. 被引量:4
  • 7邹心遥,姚若河.基于LSSVM的小子样元器件寿命预测[J].半导体技术,2011,36(9):730-733. 被引量:3
  • 8邹心遥,姚若河.LSSVM在指数寿命型小子样IC寿命预测的应用[J].科学技术与工程,2011,11(24):5946-5949. 被引量:2
  • 9史宝华.微电子器件可靠性[M].西安:西安电子科技大学出版社,1999..
  • 10CHERKASSKY V, MAY. Practical selection of SVM parameters and noise estimation for SVM regression [ J ]. Neural Networks, 2004, 17 (1) : 113-126.

二级参考文献20

  • 1Vapnik V N. Statistical learning theory [ M ]. New York : Wiley Interscience Publisher, 1998.
  • 2Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [ M ]. Advance in Neural Information Processing Systems. Cambridge : MIT Press, 1997:281-257.
  • 3Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20 ( 3 ) : 273- 297.
  • 4Suykens J K, Gestel T V, Brabanter J D, et al. Least squares support vector machines [ M ]. Singapore : World Scientific Press ,2002.
  • 5Zhang L F, Xie M, Tang L C. A study of two estimation approaches for parameters of Weibull distribution based on WPP [ J ]. Reliability Engineering & System Safety, 2007,92(3 ) :360-368.
  • 6Pelckmans K,Suykens J A K, Gestel T V,et al. LS-SVM software [CP/OL]. (2003-02- 25). http://www. esat. kuleuyen. ac. be/sista/lssvmlab/.
  • 7Soman K P, Misra K B. A least square estimation of three parameters of a Weibull distribution [ J ]. Microelectron Reliability, 1992,32( 3 ) :303-305.
  • 8Degraeve R, Groesenken G, Bellens R, et al. A consisterft model for the thickness dependence of intrinsic breakdown in ultra-thin oxides [C]. IEDM Tech Dig. Washington D C, 1995:866-869.
  • 9Kuo W, Tep S. An exploratory study of a neural network approach for reliability data analysis. Quality and Reliability Engineering Interna- tional, 1995 ; 11 ( 2 ) : 107-112.
  • 10Suykens J A K, Gestel T V, Brabanter J D, at el. Least squares support vector machines. Singapore:World Scientific Press, 2002.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部