期刊文献+

基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究 被引量:7

High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function
原文传递
导出
摘要 用流体模型研究高功率微波气体击穿时,电子能量分布函数常被假设为麦克斯韦分布形式,此假设可能将给模拟结果带来较大的误差.通过求解玻尔兹曼方程,得到非平衡状态下的电子能量分布函数.分别将上述两类分布函数引入到流体模型中,对氩气击穿进行了数值模拟.结果表明,基于非平衡分布函数得到的击穿时间与粒子模拟结果符合得很好,而当平均电子能量较低时,麦克斯韦分布函数的高能尾部导致了较短的击穿时间.最后,采用非平衡分布函数计算了不同压强下的氩气击穿阈值,发现其与实验结果基本符合. The electron energy distribution function (EEDF) is usually assumed to be of the Maxwellian distribution in the fluid model in the simulation of high power microwave breakdown in gas. However, this assumption may lead to some large errors in the simulations. In this paper we compute the non-equilibrium EEDF via solving the Boltzmann equation directly, and incorporate it into the fluid model for argon breakdown. Numerical simulations show that the breakdown time obtained by the fluid model with the non-equilibrium EEDF accords well with the Particle-in-cell-Monte Carlo collision simulation result, while the Maxwellian EEDF has higher energy tail and results in faster breakdown time at low mean electron energy. Based on the non-equilibrium EEDF, the dependence of the breakdown threshold on the pressure predicted by the fluid model accord well with the argon breakdown experimental result.
机构地区 西南交通大学
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第5期254-260,共7页 Acta Physica Sinica
基金 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:11076022) 教育部博士点基金(批准号:20110184110016) 中央高校基本科研业务费专项资金资助的课题~~
关键词 微波气体击穿 电子能量分布函数 流体模型 玻尔兹曼方程 microwave breakdown in gas, electron energy distribution function, fluid model, Boltzmann equation
  • 相关文献

参考文献1

二级参考文献21

  • 1Gurevich A, Borisov N, Milikh G .1997 Physics of Microwave Discharges ( New York : Gordon and Breach).
  • 2Oda Y, Komurasaki K, Takahashi K .2006 J. Appl. Phys. 100 113307.
  • 3MacDonald A D .1966 Microwave Breakdown in Gases ( New York : John Wiley & Sons).
  • 4Vikharev A L, Gorbachev A M, Kim A V, Kolsyko A L .1992 Sov. J. Plasma Phys. 18 554.
  • 5Popovic S, Exton R J, Herring G C .2005 Appl. Phys. Lett. 87 061502.
  • 6Esakov I I, Grachev L P, Khodataev K V, Bychkov V L, Van Wie D M .2007 IEEE Trans. Plasma Sci. 35 1658.
  • 7Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J .2008 Phys. Rev. Lett. 100 035003.
  • 8Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y .2009 Phys. Plasmas 16 055702.
  • 9Cook A, Shapiro M, Temkin R .2010 Appl. Phys. Lett. 97 011504.
  • 10Nam S K, Verboncoeur J P .2009 Phys. Rev. Lett. 103 055004.

共引文献12

同被引文献45

  • 1唐涛,廖成,杨丹.FDTD求解高功率微波大气传播问题的可行性研究[J].电波科学学报,2010,25(1):122-126. 被引量:13
  • 2卢洵,赵朝锋,徐振启,侯德亭.高功率微波在大气击穿时的传输特性研究[J].信息与电子工程,2004,2(4):287-289. 被引量:2
  • 3曹金坤,周东方,牛忠霞,邵颖,邹伟,邢召伟.重复频率高功率微波脉冲的大气击穿[J].强激光与粒子束,2006,18(1):115-118. 被引量:25
  • 4Yee J H,Alvarez R A,Mayhall D J,et al. Theory of in-tense electromagnetic pulse propagation through the at-mosphere [J]. Phys Fluids, 1986 29(4) : 1238-1244.
  • 5Chang C, Zhu X,Liu G, et al. Design and experimentsof the GW high-power microwave feed hom[ J]. Progressin Electromagnetics Research, 2010, 101:157-171.
  • 6Zhou Q, Dong Z. Modeling study on pressure dependenceof plasma structure and formation in 110 GHz microwaveair breakdown[ J]. Appl Phys Lett, 2011,98: 161504.
  • 7Yang Y M, Yuan C W, Qian B L. Gas breakdown drivenby L band short-pulse high-power microwave [ J ] ? PhysPlasmas, 2012, 19: 122101.
  • 8Tang T,Liao C,Lin W. Characteristics analysis of repe-tition frequency high-power microwave pulses in atmos-phere [J ]. Progress in Electromagnetics Research M,2010,14: 207-220.
  • 9Zhao P,Liao C,Lin W, et al. Numerical studies of thehigh power microwave breakdown in gas using the fluidmodel with a modified electron energy distribution func-tion [J]. Phys Plasmas, 2011 , 18:102111.
  • 10Zhao P,Liao C,Lin W. Numerical studies of the propa-gation of high-power damped sine microwave pulse in theatmosphere [ J ]. Journal of Electromagnetic Waves andApplication,2011,25:2365-2378.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部