期刊文献+

A New Circulant Preconditioned GMRES Method for Solving Ordinary Differential Equation 被引量:1

一个新的求解常微分方程的循环预条件GMRES方法(英文)
下载PDF
导出
摘要 The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.
作者 朱睦正
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第4期535-544,共10页 数学季刊(英文版)
基金 Supported by the Scientific Research Foundation for Advisor Program of Higher Education of Gansu Province(1009-6) Supported by the Scientific Research Foundation for Youth Scholars of Hexi University(qn201015)
关键词 circulant preconditioner boundary value method ordinary differential equation(ODE) GMRES circulant preconditioner boundary value method ordinary differential equation(ODE) GMRES
  • 相关文献

参考文献17

  • 1JIN Xiao-qing, SIN Vai-kuong, SONG Li-li. Circulant-block preconditioners for solving ordinary differential equations[J]. Appl Math Comput, 2003, 140(2-3): 409-418.
  • 2BRUGNANO L, TRIGIANTE D. Solving Differential Problems by Multistep Initial and Boundary Value Methods[M]. Amsterdam: Gordon and Breach Science Publishers, 1998.
  • 3LAMBERT J. Numerical Methods for Ordinary Differential Systems: the Initial Value Problem[M], Chichester: John Wiley & Sons Ltd, 1991.
  • 4BERTACCINI D. A circulant preconditioner for the systems of LMF-based ODE codes[J]. SIAM J Sci Comput, 2000, 22(3): 767-786.
  • 5SAAD Y, SCHULTZ M. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J], SIAM J Sci Stat Comput, 1986, 7(3): 856-869.
  • 6VAN DER VORST H. BI-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J]. SIAM J Sci Stat Comput, 1992, 13(2): 631-644.
  • 7CHAN T. An optimal circulant preconditioner for toeplitz systemsfj]. SIAM J Sci Stat Comput, 1988, 9(4): 766-771.
  • 8BERTACCINI D, NG M. Skew-circulant Preconditioners for Systems of LMF-based ODE Codes, in Numerical Analysis and its Applications(Lecture Notes in Computer Sciencel988)[C]. Berlin: Springer, 2001.
  • 9CHAN R, NG M, JIN Xiao-qing. Strang-type preconditioners for systems of LMF-based oDE codes[J]. IMA J Numer Appl, 2001, 21(2): 451-462.
  • 10BERTACCINI D, NG M. Block oi-circulant preconditioners for the systems of differential equations[J]. Calcolo, 2003, 40(2): 71-90.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部