期刊文献+

DOUBLE-MARKOV RISK MODEL

DOUBLE-MARKOV RISK MODEL
下载PDF
导出
摘要 Given a new Double-Markov risk model DM = (μ, Q, v, H; Y, Z) and Double-Markov risk process U = {U(t), t 〉 0}. The ruin or survival problem is addressed. Equations which the survival probability satisfied and the formulas of calculating survival probability are obtained. Recursion formulas of calculating the survival probability and analytic expression of recursion items are obtained. The conclusions are expressed by Q matrix for a Markov chain and transition probabilities for another Markov Chain. Given a new Double-Markov risk model DM = (μ, Q, v, H; Y, Z) and Double-Markov risk process U = {U(t), t 〉 0}. The ruin or survival problem is addressed. Equations which the survival probability satisfied and the formulas of calculating survival probability are obtained. Recursion formulas of calculating the survival probability and analytic expression of recursion items are obtained. The conclusions are expressed by Q matrix for a Markov chain and transition probabilities for another Markov Chain.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第2期333-340,共8页 数学物理学报(B辑英文版)
基金 supported by NSFC (11171101, 11271121) Doctoral Fund of Education Ministry of China (20104306110001) Scientific Research Fund of Hunan Provincial Education Department (12C0562)
关键词 Q process Markov chain Double-Markov risk characterization survival prob-ability recursion formula Q process Markov chain Double-Markov risk characterization survival prob-ability recursion formula
  • 相关文献

参考文献2

二级参考文献12

  • 1王汉兴,傅云斌.离散的三项分布风险模型的渐近解[J].运筹学学报,2006,10(3):99-108. 被引量:2
  • 2王汉兴,颜云志,赵飞,方大凡,郭兴明(推荐).马氏风险过程[J].应用数学和力学,2007,28(7):853-860. 被引量:3
  • 3Grandell J. Aspects of Risk Theory[M]. New York: Springer-Verlag, 1991.
  • 4Gerber H U. An Introduction to Mathematical Risk Theory[ M]. S S Heubner Foundation Monograph series 8, Philadelphia, 1979.
  • 5Mikosch T. Heavy-tailed modelling in insurance[J]. Stochastic Models, 1997,13(4) :799-816.
  • 6Kluppelbery C,Mikosch T. Large deviations of heavy-tailed random sums with applications in insurance and finance[ J ]. J Appl Prob, 1997,34(2) :293-308.
  • 7Asmussen S.Applied Probability and Queues [M] .New York:John Wiley & Sons, 1987.
  • 8Asmussen S. Risk theory in a Markovian environment[J]. Scand Act J, 1989,69-100.
  • 9Wang Y H. Bounds for the rain probability under a Markovian modulated risk model[J]. Stochastic Models, 1999,15( 1 ) : 125-136.
  • 10Blaszczyszyn B, Rolski T. Expansions for Markov-modulated systems and approximations of rain probability[J]. J Appl Prob, 1995,33: 57-70.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部