摘要
建立了描述具有几何和物理非线性均匀柱动力学行为的偏微分—积分方程 ,柱的材料满足Leadder man非线性本构关系 .对于两端简支的情形 ,采用Galerkin方法简化为常微分—积分方程 ;
The integro partial differential equation that governs the dynamical behavior of homogeneous viscoelastic columns with material and geometric nonlinearities is established The material of the columns obeys the Leaderman nonlinear constitutive relation.In the case of two simple supported ends,the Galerkin method is applied to simplify the equation to a integro differential equation.The equation is further simplified to a set of differential equations by introducing an additional variable.
出处
《商丘师范学院学报》
CAS
2000年第6期21-24,共4页
Journal of Shangqiu Normal University
基金
国家自然科学基金项目!(19727027)
上海市科技发展基金项目!(98SHB1417
98JC14032)
关键词
粘弹性柱
几何非线性
本构关系
动力学模型
viscoelastic column
geometric nonlinearities
Leaderman constitutive relation
Galerkin method