期刊文献+

一种分层组合的半监督近邻传播聚类算法 被引量:15

Semi-supervised Affinity Propagation Clustering Algorithm Based on Stratified Combination
下载PDF
导出
摘要 针对近邻传播(AP)聚类算法的计算复杂度和准确性,该文提出一种分层组合的半监督近邻传播聚类算法(SAP-SC)。算法引入"分层聚类"的思想,将一次AP聚类过程等分成若干层聚类,使得处理过程简单、易于实现;每层只关注聚类"困难"的数据点,并通过构造"成对点约束"和使用"子簇标签映射"进行半监督学习;基于"组合提升"的方法将各层聚类结果加权叠加,从而提升了算法的准确性能。理论分析和实验结果表明:算法在聚类准确性和计算复杂度方面有了较大改进。 Considering the complexity and the accuracy, an improved affinity propagation clustering algorithm Semi-supervised Affinity Propagation clustering algorithm based on Stratified Combination (SAP-SC) is proposed. In order to make the operation simplified and easily-implemented, the proposed algorithm introduces a stratified clustering method which equally partitions the integrative clustering process into several smaller blocks. Focusing on the hard clustering data, every layer employs semi-supervised learning to conceive pair-wise constraints and maps each sub-cluster with the corresponding label. Also, assembled boosting method is utilized to weight together all layered results to improve the clustering performance. Finally, theoretical analysis and experimental results show that the algorithm can achieve both higher accuracy and better computational performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第3期645-651,共7页 Journal of Electronics & Information Technology
基金 国家973重点基础研究发展基金(2012CB312901 2012CB312905) 国家863计划项目(2011AA01A103)资助课题
关键词 半监督学习 近邻传播聚类 分层聚类 组合提升 Semi-supervised learning Affinity Propagation (AP) clustering Stratified clustering Assembledboosting
  • 相关文献

参考文献13

二级参考文献57

共引文献219

同被引文献128

  • 1陈小全,张继红.基于改进粒子群算法的聚类算法[J].计算机研究与发展,2012,49(S1):287-291. 被引量:31
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3Frey B J,Dueck D.Clustering by Passing Messages Between Data Points[J].Science,2007,315 (5814):972-976.
  • 4Wang C,Lai J,Suen C,et al.Multi-Exemplar Affinity Propagation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35 (9):2223-2237.
  • 5Sakellariou A,Sanoudou D,Spyrou G.Combining multiple hypothesis testing and affinity propagation clustering leads to accurate,robust and sample size independent classification on gene expression data[J].BMC bioinformatics,2012,13(1):270.
  • 6Wang L,Zhang L.Color Image Segmentation Algorithm Based on Affinity Propagation Clustering[J].Foundations of Intelligent Systems.Springer Berlin Heidelberg,2012,122:731-739.
  • 7He Yan-cheng,Chen Qing-cai,Xiao-long,et al.An Adaptive Affinity Propagation Document Clustering[C] //Proceedings of the 7th International Conference on Informatics and Systems.Shenzhen,China,2010:1-7.
  • 8Zhong Y,Zheng M,Wu J,et al.Search the Optimal Preference of Affinity Propagation Algorithm[C] //2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA).IEEE,2012:304-307.
  • 9Shang F,Jiao L C,Shi J,et al.Fast affinity propagation clustering:A multilevel approach[J].Pattern recognition,2012,45(1):474-486.
  • 10Frey B J.Affinity propagation FAQ[EB/OL].http://www.psi.toronto.edu/ affinitypropagation/faq.html,2012-01-05/2012-12-01.

引证文献15

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部