期刊文献+

基于块A~*正交匹配追踪的多传感器数据联合重构算法 被引量:5

A Joint Reconstruction Algorithm for Multiple Sensor Data Based on Block A* Orthogonal Matching Pursuit
下载PDF
导出
摘要 针对A*正交匹配追踪(A*OMP)算法计算复杂高,且不能利用信号的结构稀疏性这一缺陷,该文提出了块A*OMP算法并将其用于解决分布式压缩感知中的信号联合重构问题。该算法用原子块取代单个原子作为搜索树中的节点,在计算路径代价时用搜索树中所有路径的最大长度取代信号的稀疏度。然后在块A*OMP算法的基础上,选择与残差矩阵投影误差最小的原子块作为新的节点,得到了一种用于解决MMV(Multiple Measurement Vector,MMV)问题的块A*OMP算法,并利用该算法对相邻区域内的多个传感器所测的温度信号进行了联合重构。实验结果表明,该算法的重构性能优于MMV正交匹配追踪(OMPMMV)算法。 Considering the disadvantage of the high complexity and ignoring signal's structural sparsity in A* Orthogonal Matching Pursuit (A*OMP) algorithm, a block A*OMP algorithm is proposed for block-sparse signals, and it is improved to solve the joint reconstruction problem for multiple signals in distributed compressed sensing. In the proposed algorithm, the single atom is replaced by a block that is composed of several atoms, and the sparsity is replaced by the maximum length of all the paths on the search tree when calculating the path cost. Then on the basis of block A*OMP algorithm, a block A*OMP algorithm for Multiple Measurement Vector (MMV) problem is presented by projecting all blocks onto the residual matrix and selecting the block with the smallest projection error as a new node. With this algorithm, the temperature signals which are measured by sensors in the adjacent region are jointly reconstructed perfectly. Experiments show that the reconstruction performance of this algorithm outperform Orthogonal Matching Pursuit for MMV (OMPMMV) algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第3期721-727,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61071200 60772079) 河北省自然科学基金(F2010001294)资助课题
关键词 分布式压缩感知 联合重构 A*正交匹配追踪算法 块稀疏 Distributed Compressed Sensing (DCS) Joint reconstruction A*0rthogonal Matching Pursuit(A*0MP) Block sparsity
  • 相关文献

参考文献16

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2唐亮,周正,石磊,姚海鹏,张静.基于能量均衡的无线传感器网络压缩感知算法[J].电子与信息学报,2011,33(8):1919-1923. 被引量:13
  • 3Baron D, Duarte M F, Sarvotham S, et al.. An information -theoretic approach to distributed compressed sensing[C]. Proceedings of the 43d Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005: 814-825.
  • 4Chen J and Huo X. Theoretical results on sparse representations of multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634-4643.
  • 5Davies M E and Eldar Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1135-1146.
  • 6Kim J M, Lee O K, and Ye J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278-301.
  • 7Kim J M, Lee O K, and Ye J C. Noise robust joint sparse recovery using compressive subspace fitting[OL], http://arxiv. org/abs/1112.3446, 2012.
  • 8Karahanoglu N B and Erdogan H. A* orthogonal matching pursuit: best-first search for compressed sensing signal recovery[J]. Digital Signal Processing, 2012, 22(4): 555-568.
  • 9Karahanoglu N B and Edogan H. Compressed sensing signal recovery via A*orthogonal matching pursuit[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011: 3732-3735.
  • 10Intel berkeley lab wsn. http://db.csail.mit.edu/labdata/labdata.html, 2004.

二级参考文献10

  • 1Candes E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E and Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. Foundations of Compute Mathematics, 2006, 6(2): 227-254.
  • 4Ji S, Xue Y, and Carin L. Bayesian compressive sensing [J]. IEEE Transactions on Signal Processing, 2008, 56(6):2346-2356.
  • 5Seeger M W. Bayesian inference and optimal design for the sparse linear model [J]. Journal of Machine Learning Research, 2008, 9(4): 759-813.
  • 6Gupta H, Navda V, and Chowdhary V. Efficient gathering of correlated data in sensor networks [J]. A CM Transactions on Sensor Networks, 2008, 4(1): 4-34.
  • 7Johnsen K, Rogers A, and Jennings N R. Decentralized control of adaptive sampling in wireless sensor networks [J]. A CM Transactions on Sensor Networks, 2009, 5(3): 19-52.
  • 8Muttreja A, Raghunathan A, Ravi S, et al.. Active learning driven data acquisition for sensor networks [C]. IEEE Symposium on Computers and Communications, Caliari, 2006: 929-934.
  • 9Chun Tung Chou, Rana R, and Wen Hu. Energy efficient information collection in wireless sensor networks using adaptive compressive sensing [C]. Local Computer Networks, Zurich. 2009: 443-450.
  • 10Quer G, Masiero R, Munaretto D, et al. On the interplay between routing and signal representation for compressive sensing in wireless sensor networks [C]. Information Theory and Applications Workshop, San Diego, 2009:206-215.

共引文献12

同被引文献65

  • 1周四望,林亚平,张建明,欧阳竞成,卢新国.传感器网络中基于环模型的小波数据压缩算法[J].软件学报,2007,18(3):669-680. 被引量:41
  • 2黄海平,沙超,蒋凌云.无线传感器网络技术及其应用[M].北京:人民邮电出版社,2011.
  • 3DONOHO D. Compressed sensing [ J ]. IEEE Tram on In- formationTheory ,2006,52 (4) : 1289-1306.
  • 4B Babadi, M Kalouptsidis, V Tarokh. Asymptotic Achie- vability of the Cramer Rao Bound for Noisy Compressive Sampling[J]. IEEE Transactions on Signal Processing, 2009, 57 (3) : 1233-1236.
  • 5J Wright. Robust Face Recoginition via Sparse Represen-tation[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 6Baraniuk R, Steeghs P. Compressive radar imaging [ C ]. Proceedings of the 2007 IEEE Radar Conference. Waltham ,2007 : 128-133.
  • 7J Romberg. Imaging via compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.
  • 8G Taub ck and F Hlawatsch. A compressed sensing tech- nique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots [ C ]. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP). l_as Vegas, Nevada, April 2008. 2885-2889.
  • 9W Bajwa, J Haupt, A Sayeed and R Nowak. Joint source channel communication for distributed estimation in sensor networks [ J ]. IEEE Transactions on Signal Processing, 2007, 53(10) : 3629-3653.
  • 10Haifeng Zheng, Shilin Xiao, Xinbing Wang, Xiaohua Tian, Guizani, M. Capacity and Delay Analysis for Data Gathering with Compressive Sensing in Wireless Sensor Networks. IEEE Transactions on Wireless Communica- tions, 2013,12(2) : 917-927.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部