期刊文献+

基于EEMD和二代小波变换的表面肌电信号消噪方法 被引量:14

De-Noising Method of the sEMG Based On EEMD and Second Generation Wavelet Transform
下载PDF
导出
摘要 为了更好地消除混杂在表面肌电信号(sEMG)中的噪声,提出了一种基于总体平均经验模式分解(EEMD)和二代小波变换的sEMG消噪新方法。首先对信号加入白噪声处理后进行经验模态分解(EMD),然后对高频的内蕴模式函数(IMF)分量进行二代小波阈值消噪处理,最后把处理后的高频IMF分量与低频IMF分量进行叠加,重构后的信号即为去噪信号。实验结果表明,该方法融合了二代小波与EEMD的优点,能更好的消除噪声,最大限度的保留有用信号,并具有更高的信噪比。 In order to eliminate the noise mixed in surface electromyography (sEMG), the paper presents a new sEMG de-noising method based on ensemble empirical mode decomposition(EEMD) and second generation wavelet transform. Firstly, the white noise-added sEMG signals are decomposed by the empirical mode decomposition (EMD). Secondly, the high-frequency Intrinsic Mode Function (IMF)components are denoised by the second generation wavelet threshold method. Finally, the high frequency IMF components processed and low frequency IMF components are reconstructed to get the denoised signal. The experimental results show that the method combines the advantages of second generation wavelet and EEMD, which can better eliminate noise, retain the useful signal as much as possible, and has a higher signal-to-noise ratio.
出处 《传感技术学报》 CAS CSCD 北大核心 2012年第11期1488-1493,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(60903084 61172134 61201300) 浙江省自然科学基金项目(Y1111189 LY12F03006) 浙江省科技计划项目(2010C33075)
关键词 表面肌电信号 消噪 总体平均经验模式分解 二代小波 surface electromyography (sEMG) de-noising ensemble empirical mode decomposition the second generation wavelet
  • 相关文献

参考文献17

  • 1De Luca, Carlo J. Physiology and Mathematics of My Electric Signals [ J ]. IEEE Transactions on Biomedical Engineering, 1979, 26(6) :313-325.
  • 2Fiorucci E, Bucci G, Cattaneo R, et al. The Measurement of Surface Electromygraphy Signal in Rest Position for the CmTect Prescription of Eyeglasses [ J ]. IEEE Transactions on Instrumentation and Meas- urement,2012,61 (2) :419-428.
  • 3徐文良,孟明,马玉良.HHT方法在人体下肢表面肌电信号分析中的应用[J].传感技术学报,2010,23(3):297-302. 被引量:4
  • 4Hoover Carl D, Fulk George D, Fire Kevin B. The Design and Initial Experimental Validation of an Active Myoelectric Transimoral Prosthesis [ J ]. Journal of Medical Devices, 2012,6 ( 1 ) :011005 (12pages).
  • 5Agostini V, Knaflitz M. An Algorithm for the Estimation of the Signal-To-Noise Ratio in Surface Myoelectric Signals Generated During Cyclic Movements [ J ]. IEEE Transactions on BiomedicalEngineering,2012,59 ( 1 ) :219-225.
  • 6Wu C,Chang H,Lee P,et al. Frequency Recognition in an SSVEP- Based Brain Computer Interface Using Empirical Mode Decomposition and Refined Generalized Zero-Crossing[ J]. Journal of Neuroscience Methods,2011,196 ( 1 ) : 170-18 I.
  • 7Taheri F. Damage Identification in Beams Using Empirical Mode Decomposition [ J ]. Structural Health Monitoring, 201 I , 10 ( 3 ) : 261-274.
  • 8朱丹丹,王鹏.EMD消噪在取样光栅滤波器设计中的应用[J].传感技术学报,2012,25(3):374-377. 被引量:2
  • 9胡维平,莫家玲,龚英姬,赵方伟,杜明辉.经验模态分解中多种边界处理方法的比较研究[J].电子与信息学报,2007,29(6):1394-1398. 被引量:32
  • 10Wu Z,Huang N E. A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method [ J ]. Proceeding of the Royal Society London A ,2004,460 : 1579- 161 1.

二级参考文献35

共引文献35

同被引文献147

引证文献14

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部