期刊文献+

基于均值漂移聚类算法的背景重构

Background Reconstruction Based on the Mean Shift Clustering Algorithm
下载PDF
导出
摘要 针对传统的基于像素点进行背景重构的算法中运算复杂、背景图像失真等缺点,提出了一种基于像素点均值漂移聚类算法的背景重构方法。首先通过变化率的判断省略一部分不存在运动对象的像素点,然后对其余大部分像素点需要通过典型样本点的均值漂移算法迭代运算,最后对结果进行聚类得到背景点值。仿真结果表明,该方法在复杂运动目标视频序列中能够快速、完整地重构背景。 To overcome disadvantages of traditional baekground reconstruction algorithms, such complex com- putation and distortional background, a background reconstruction algorithm was proposed based on pixel sequence mean shift clustering, first of all by the judgment of the rate of change a part of the pixels are omitted which the mo- tion object dose not exist, than the most of the pixels are calculed iteratively by typical sample point the mean shift algorithm, finally background point value are obtained from clustering results. The simulation results indicate the fast and efficient performance background reconstruction in complex moving target video sequence.
出处 《科学技术与工程》 北大核心 2013年第7期1988-1991,共4页 Science Technology and Engineering
关键词 背景重构 变化率 均值漂移 聚类 background modeling rate mean shift clustering
  • 相关文献

参考文献8

  • 1Haritaoglu 1, Harwond D, Davis L S. W4 : real-time surveillance of peo- ple and their activities. IEEE Trans on Pattern Analysis and Machine intelligence,2000 ;27 ( 8 ) :809-850.
  • 2Ridder C, Munkeh O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filtering//Proc of the lnt' I Conf on Recent Advances in Mechatronics, lstanbul, Turkey, 1995 : 193-199.
  • 3Stauffer C,Grimson W E 1.. Adaptive background mixture models for real tine tracking//Proc of IEEE Computer Society Conf on Computer Vision and Pattern Recognition, FortCollins, CO, USA. 1999; 2: 246-301.
  • 4Elgammal A, Harwood D, Davis I, S. Non-parametric model for back- ground subtraction//Proc of the 6th European Conf on Computer Vi- sion, Dublin, Ireland ,2000:751 -767.
  • 5Liu Yazhou, Yao Hongxun, Gao Wen. Nonparametric background generation,journal of visual communication&image representation. J Vis Commun Image R ,2007 ; 18:253-263.
  • 6Yuan Xiao-Tong, Hu Baogang. Agglomerative mean-shift cluste- ring. IEEE TRansactions on Knowledge and Data Engineering,2012; 24(2) : 209-219.
  • 7Fei W, Zhu S. Mean shift clustering-based moving object segmenta- tion in the H, 264 compressed domain. IET Image Process, 2010; 4 ( Iss,1 ) :11-18.
  • 8杜会斌,等.基于均值漂移的背景建模方法.测控遥感与导航定位,2011;41(7):42-44,50.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部