期刊文献+

基于神经网络技术的管道机电阻抗健康状况定量评估研究 被引量:4

Study of Electromechanical Impedance Quantitative Evaluation for Pipeline Structure Based on Neural Network Technique
原文传递
导出
摘要 将机电阻抗法用于管道法兰和主干结构健康监测,并利用BP神经网络对结构损伤进行定量评估。首先实验研究了管道法兰与主干结构健康状况对阻抗谱的影响,不同的结构损伤可通过阻抗分析仪测量的阻抗实部谱变化反映出来;然后利用BP神经网络技术对管道不同工况下得到的阻抗实部谱进行定量分析。采用阻抗值实部作为输入样本对神经网络进行训练,并使用受训的神经网络实现了对管道中不同结构损伤状况的定量评估。研究结果表明,将机电阻抗法与神经网络数据处理技术结合起来用于复杂管道的结构健康监测,不仅可实现对不同类型损伤的定量评估,同时还具有较高的稳定性。 Electromechanical impedance method was adopted to monitor the health condition of flange and main body of pipeline structure, furthermore, BP neural network was used to evaluate structure damage quantitatively. In experiment, the influence of health condition of flange and pipeline structure main body on the impedance spectra was studied firstly, then, the variation of real parts of impedance spectra obtained from impedance analyzer can characterize the different kinds of structure damage. BP neural network technique was used to quantitatively analyze the real parts of impedance spectrum under pipeline structure different working conditions. The real part of impedance spectra were selected as input samples to train developed neural network, finally, the trained neural network can achieve the quantitative evaluation of different kinds of damage in pipeline structure. Results show that the combination of electromechanical impedance method and neural network data processing technique for structural health monitoring of complex pipeline structure not only can effectively achieve quantitative evaluation of different kinds of defect but also have high stability.
出处 《实验力学》 CSCD 北大核心 2013年第1期20-26,共7页 Journal of Experimental Mechanics
基金 NSFC-RGC联合资助项目(60831160523) 国家自然科学基金项目(50975006 51075012 11172014) 北京市自然科学基金(1122007) 北京市教委科技计划(KM201010005003) 北京市科技新星计划(2008A015)
关键词 神经网络 机电阻抗法 管道 法兰 结构健康监测 neural network electromechanical impedance method pipeline flange structure healthmonitoring
  • 相关文献

参考文献12

  • 1Liang C, Sun F, Rogers C. Coupled electro-mechanical analysis of adaptive material systems-Determination of the actuator power consumption and system energy transfer[J].Journal of Intelligent Material Systems and Structures, 1994, 5(1) :]2-20.
  • 2Lim Y, Bhalla S, Soh C. Structural identification and damage diagnosis using self-sensing piezo-impedance transducers[J]. Smart Materials and Structures, 2006, 15(4):987-995.
  • 3吴斌,佟啸腾,刘增华,何存富.基于机电阻抗技术的管道法兰结构健康监测实验研究[J].实验力学,2010,25(5):516-521. 被引量:18
  • 4Mascarenas D, Todd M, Park G, et al. Development of an impedance-based wireless sensor node for structural health monitoring[J]. Smart Materials and Structures, 2007, 16(6):2137-2145.
  • 5杜德润,仇德伦,李爱群,王修信.神经网络技术在土木结构健康监测中的应用[J].无损检测,2004,26(8):383-387. 被引量:13
  • 6Lopes V, Park G, Cudney H, et al. Impedance-based structural health monitoring with artificial neural networks [J]. Journal of Intelligent Material Systems and Structures, 2000, 11(3):206-214.
  • 7Yan W, Yuan L. Damage detection in structural systems using a hybrid method integrating EMI with ANN[C]. Power and Energy Engineering Conference, Chengdu: Institute of Electrical and Electronics Engineers Power Energy Society, 2010 : 1-4.
  • 8Sepehry N, Shamshirsaz M, Abdollahi F. Temperature variation effect compensation in impedance-based structur- al health monitoring using neural networks[J]. Journal of Intelligent Material Systems and Structures, 2011, 22 (17) : 1975- 1982.
  • 9Min J, Park S, Yun C. Impedance-based structural health monitoring using neural networks for autonomous frequency range selection[J]. Smart Materials and Structures, 2010, 19(12):125011-1-10.
  • 10卢翔,朱楚为,章建文,王宁,李允.压电阻抗技术在焊缝裂纹监测中的应用[J].南京航空航天大学学报,2011,43(2):205-209. 被引量:12

二级参考文献59

共引文献50

同被引文献73

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部