期刊文献+

一类二阶两点边值问题解的存在唯一性 被引量:1

Existence and Uniqueness of Solution for Second-order Two-point Boundary Valve Problem
下载PDF
导出
摘要 研究了一类二阶隐式微分方程两点边值问题解的存在唯一性,利用压缩映像原理得到了解的存在性结果. In this paper the existence and uniqueness of solution to two-point boundary value problem of second order implicit ordinary differential equations is discllssed. The contraction mapping principle is employed to obtain existence result.
作者 姚晓斌
出处 《湖南工程学院学报(自然科学版)》 2013年第1期65-66,共2页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 隐式常微分方程 压缩映像原理 存在唯一性 implicit ordinary differential equations ness contraction mapping principle existence and unique
  • 相关文献

参考文献5

  • 1Agarwal, R. P.. Two-point Problems for Non-linear Second Order Differential Equat ions[J2. J. Mat h. Phys. Sci. 1974. 8: 571-576.
  • 2Das, K. M.. and Lalli, B. S.. Boundary Value Prob- lems for y"= f ( x , y , y' ,y"). J. Math[J].Analysis Applic. 1981, 81 : 300-307.
  • 3Agarwal, R. P.. On Boundary Value Problems for y f ( x , y , y~ ,y")Bulletin of the Institute of Mathemat- ics, Academia[J~, Sinica. 1984,12(2) : 153 - 157.
  • 4Bax ley, J. V.. and Brown,S. E.. Existence and U- niqueness for Ttwo-point Boundary Value Problems [J]. Proceedings of the Roy al Society of Edinburgh. 1981, 88A: 219-234.
  • 5D. Guo, J. Sun, Nonlinear Integral Equations[M]. Shandong Science and Echnology Press Jinan, 1987.

同被引文献5

  • 1Agarwal. R. P. Two-point problems for non-linear second order differential equations[J].Math Phys Sci,1974,(211):571-576.
  • 2Das,K.M,Lalli,B. S. Boundary value problems for y″=f(x, y, y′,y″)[J].Math Analysis Applic,1981,(43):300-307.
  • 3Agarwal,R.P. On boundary value problems for y″=f(x, y, y′,y″)[J].Bulletin of the institute of mathematics academia sinica,1984,(02):153-157.
  • 4Baxley,J. V,Brown,S. E. Existence and uniqueness for two-point boundary value problems[J].Proceedings of the Royal Society of Edinburgh,1981.219-234.
  • 5姚晓斌.二阶隐式微分方程四点积分边值问题解的存在唯一性[J].长春师范学院学报(自然科学版),2013,32(2):6-7. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部