期刊文献+

取水泵站能效的模型预测控制

Model Predictive Control of Energy Efficiency of an Intake Pump Station
下载PDF
导出
摘要 在研究取水泵站能量模型及能效开环优化控制基础上,提出一种系统级的运行效率模型预测控制方法。本控制方法以定速泵运行状态为优化变量,以泵站总能源费用最小为目标。目标函数融入了分时电价及取水口水位等变量,并处理了总用水量、清水池水位高低限等约束。以一座配置定速泵的取水泵站为例,对开环优化及模型预测控制方法分别进行了仿真研究和对比分析。验证了能效模型预测控制方法的有效性及其处理变量预测误差的性能。提出的控制方法还能实现需求侧优化管理,有助于电网'移峰填谷'策略的实施。 The energy model of an intake pump station was firstly introduced. Then, an open loop optimal control approach and a model predictive control (MPC) approach were introduced to improve the operational efficiency of intake pump stations. They lump time-of-use (TOU) tariff and intake level into their objective functions, and take total water consumption and the low and high limit of the clean water reservoir as constraints as well. An intake pump station, equipped with three constant speed pumps, was taken as a case study. The conventional optimal control and the MPC approach were investigated, respectively. The advantage of the MPC approach was convinced by the simulation results. Further, the load shifting of intake pump stations was also achieved through the proposed control approaches.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第3期50-54,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 江苏省自然科学基金资助项目(SBK201121841) 湖北省自然科学基金资助项目(2011CDB277)
关键词 取水泵站 能效 开环优化模型预测控制 移峰填谷 Intake pump station Energy efficiency Open loop optimal control Model predictivecontrol Load shifting
  • 相关文献

参考文献16

  • 1Marais J, Mathews E, Pelzer R. Analysing DSM opportunities on mine conveyor systems[ C ]///Industrial and Commercial Use of Energy Conference, Cape Town, South Africa, 2008.
  • 2Xia X H, Zhang J F. Energy efficiency and control systems from a POET perspective [ C ] //IFAC Conference on Control Methodologies and Technology for Energy Efficiency, 2010,1:255 260.
  • 3Zhang J, Xia X, Alexander D. Demand side optimal strategy for voluntary load shedding [ C ] //The Second IASTED Africa Conference on Power and Erergy System, Gaborone, Botswana, 2008.
  • 4Ilemobade A A, Manson N J, Stephenson D. Pump and reservoir system operational optimization using a non-linear tool[ J ]. Journal of The South African Institution of Civil Engineering, 2005, 47(4) : 2 11.
  • 5Bar6n B, Von Liicken C, Sotelo A. Multi-objective pump scheduling optimization using evolutionary strategies [ J]. Advances in Engineering Software, 2005, 36 ( 1 ) : 39 - 47.
  • 6Beckwith S P, Wong K P. A genetic algorithm approach for electric pump scheduling in water supply systems [ C //IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, 1996.
  • 7Moreno M A, Planells P, Crcoles J I, et al. Development of a new methodology to obtain the characteristic pump curves that minimize the total cost at pumping stations[ J]. Biosystems Engineering, 2009, 102( 1 ) : 95 105.
  • 8Moreno S A, CarriOn P A, Planells P, et al. Measurement and improvement of the energy efficiency at pumping stations [ J]. Biosystems Engineering, 2007, 98 (4) : 479 486.
  • 9Lertpalangsuntia N, Chana C W, Masonb R, et al. A toolset for construction of hybrid intelligent forecasting systems: ipplication for water demand prediction [ J], Artificial Intelligence in Engineering, 1999, 13 ( 1 ) : 21 - 42.
  • 10Zhou S L, MeMahan T A, Walton A, et al. Forecasting operational demand for an urban water supply zone [ Jl. Journal of Hydrology, 2002, 259 ( 1 4) : 189 202.

二级参考文献24

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部