摘要
定义了集合范畴上的超滤函子F_u(-),并研究了相关性质.包括函子F_u(-)在有限集上保拉回,一个集合的子集成为F_u-子余代数的充要条件,以及两个余代数之间的态射是F_u-余代数同态的充要条件,子集成为子余代数的充要条件,最后以拓扑空间作为F_u-余代数的具体实例,研究了拓扑空间的连续映射与超滤函子的余代数同态之间的关系.
In this paper, we introduce ultrafilter functor Fu(-) on the category Set and discuss its properties. We get that the ultrafilter functor Fu(-) can preserve pullback on finite set. And we consider the necessary and sufficient conditions under which a subset is a Fu-subcoalgebra and a morphism is an Fu-coalgebra homomorphism. Finally, we take the topological spaces as an concrete example of the Fu-coalgebra to consider the relation
出处
《数学的实践与认识》
CSCD
北大核心
2013年第6期246-250,共5页
Mathematics in Practice and Theory
关键词
超滤
函子
保拉回
余代数同态
ultrafilter
functor
pullback
homomorphism of coalgebras