摘要
在具有一致Gateaux可微范数的Banach空间中,建立了一个改进的非扩张映射不动点的粘性逼近方法,并在一定条件下证明了该方法所得到的迭代序列的强收性.本文所得结果扩展并统一了部分文献的结果.
Based on the viscosity iterative scheme,the modified iterative sequence for the fixed point of nonexpansive mappings has been established in a real Banach space with a uniformly Gateaux differentiable norm. Under some suitable conditions,we present the strong convergence of the iterative sequence. This method can extend and unify the results of some literature.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第6期267-271,共5页
Mathematics in Practice and Theory
基金
重庆市自然科学基金资助项目(CSTC
2012jjA00039)
关键词
非扩张映射
不动点
粘性逼近方法
强收敛
nonexpansive mappings
fixed point
viscosity approximation method
strongconvergence