期刊文献+

复杂曲面切割机构运动及误差分析的旋量方法 被引量:2

Kinematics and Errors Analysis of Cutting Machine for Complex-surface Using Screw Theory
下载PDF
导出
摘要 针对传统串并联机构分析方法计算烦琐、直观性不强等问题,以复杂曲面切割机为研究对象,在使用旋量方法表示空间刚体运动的基础上,建立了串并联机构的运动学指数积公式的完整表示方法.将4个D-H参数误差等效为误差旋量,建立各关节轴线含有误差旋量的旋量坐标,推导出了含有误差旋量的串并联机构运动学指数积公式,并建立了末端工具坐标系的位姿误差模型.按照上述旋量分析方法,用MATLAB对复杂曲面切割机构进行运动及误差数值计算,并将计算结果与ADAMS仿真结果进行比较.对比结果表明:2组结果的相对误差仅在0.001内,表明了旋量方法在串并联机构分析中应用的正确性. According to the problems of calculation complexity and abstractness in the traditional analysis methods of serial-parallel mechanism, cutting machine for complex-surface was researched and the complete kinematic product of exponentials formula of serial-parallel mechanism was established based on the screw representation of spatial rigid motion. The errors of 4 D-H parameters were equivalent to error screw, and the practical screw coordinate containing error screw of every joint axis was established. With the practical kinematic product of exponentials formula of serial-parallel mechanism derived, the pose error model of tool coordinate system was established. According to the above screw method, the numerical calculation of cutting machine about kinematic and error was performed with MATLAB and the calculation results were compared with the simulation results of ADAMS. The comparison results show that the relative error of the two groups of calculation results is within the 0. 001 orders of magnitude, which certifies the correctness of screw method' s application in the analysis of serial-parallel mechanism.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第3期346-352,共7页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(51175099)
关键词 旋量方法 串并联机构 误差旋量 指数积公式 误差模型 screw theory serial-parallel mechanism error screw product of exponentials formula error modeling
  • 相关文献

参考文献10

  • 1理查德·摩雷,李泽湘.夏恩卡·萨思特里.机器人操作的数学导论[M].北京:机械工业出版社,1998
  • 2MURRAY R W, LI Z, SASTRY S S. A mathematical introduction to robot manipulation[ M ]. Boca Raton: CRC Press, 1993: 18-82.
  • 3李君.基于旋量理论的Stanford臂的运动学分析[J].天津科技大学学报,2010,25(4):72-75. 被引量:18
  • 4张付祥,付宜利,王树国.闭链级联式机器人基于旋量理论的运动学分析方法[J].机械工程学报,2006,42(4):112-117. 被引量:18
  • 5VEITSCHEGGER W K, WU Chi-haur. Method for calibration and compensation robot kinematic errors [ C ] //Proceedings of the 1987 International Conference on Robotics and Automation. New York: IEEE, 1987: 59- 44.
  • 6STONE H W, SANDERSON A C. A prototype arm signature identification system [ C ] //Proceedings of the 1987 International Conference on Robotics and Automation. New York: IEEE, 1987:125-182.
  • 7辛立明,徐志刚,赵明扬,朱天旭.基于改进的多体系统误差建模理论的激光拼焊生产线运动误差模型[J].机械工程学报,2010,46(2):61-68. 被引量:15
  • 8MOON S K, MOON Y M. Screw theory based metrology for design and error compensation of machine tools [ C ] //Proceedings of the ASME Design Engineering Technical Conference. [ S. l. ] : ASME, 2001 : V2, 697-707.
  • 9MOON S K. Error prediction and compensation of reconfigurable machine tool using screw kinematics [ D ]. Michigan : College of Engineering, University of Michigan, 2002.
  • 10杜力,黄勇刚,邹昌平,黄茂林.基于虚拟运动副的开链机构误差建模与仿真[J].农业工程学报,2010,26(6):157-162. 被引量:7

二级参考文献38

共引文献81

同被引文献20

  • 1Dai Jiansheng (Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College, University of London,Strand,London WC2R 2LS, United kingdom) Zhang Qixian (Robotics Research Institute,Beijing University of Aeronautics and.METAMORPHIC MECHANISMSAND THEIR CONFIGURATION MODELS[J].Chinese Journal of Mechanical Engineering,2000,13(3):212-218. 被引量:64
  • 2肖尚彬.四元数方法及其应用[J].力学进展,1993,23(2):249-260. 被引量:43
  • 3焦国太,余跃庆,梁浩.机器人位姿误差的结构矩阵分析方法[J].应用基础与工程科学学报,2001,9(2):259-265. 被引量:15
  • 4戴建生,丁希仑,邹慧君.变胞原理和变胞机构类型[J].机械工程学报,2005,41(6):7-12. 被引量:96
  • 5吴艳荣,金国光,李东福.变胞机构的构态分析及其运动学仿真研究[J].机械科学与技术,2006,25(9):1092-1095. 被引量:8
  • 6金国光.变胞机构结构学、运动学及动力学研究[R].北京:北京航空航天大学.2003.
  • 7LI Duanling, SUN Hanxu, JIA Qingxuan, et al. Kinematic analysis and simulation of metamorphic mechanisms [ C ]// Proceedings of the lhh World Congress in Mechanism and Machine Science. Beijing, China, 2004: 1289-1294.
  • 8DAI Jiansheng, REES J J. Kinematics and mobility analysis of carton folds in packing manipulation based on the mecha- nism equivalent [ J ]. Proceedings of the Institution of Me- chanical Engineers, Part C: Journal of Mechanical Engi- neering Science, 2002, 216(10) : 959-970.
  • 9DAI Jiansheng, REES J J. Matrix representation of topolog- ical changes in metamorphic mechanisms [ J]. Transactions of ASME, Journal of Mechanical Design, 2005, 127(4) : 837-840.
  • 10PAUL R P. Robot manipulators: mathematics, programming, and control[M]. London: The MIT Press, 1981: 50-60.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部