期刊文献+

基于Co-training方法的车辆鲁棒检测算法 被引量:1

Robust Vehicle Detection Algorithm Based on Co-training Method
下载PDF
导出
摘要 针对复杂交通场景车辆检测算法自适应能力差的问题,提出了基于Co-training半监督学习方法的车辆鲁棒检测算法.首先,针对手工标记的少量样本,分别训练基于Haar-like特征的AdaBoost分类器和基于HOG(histograms of oriented gradients)特征的SVM(support vector machines)分类器,使其具有一定的识别能力;然后,基于Co-training半监督学习框架,将利用2种算法进行分类得到的新样本分别加入到对方的样本库中,增加训练样本数量,再次进行分类器的训练.由于这2类特征具有冗余性,各自检测出的正负样本包含对方漏检和误检的图像.由于样本数的增加,再次训练所得到的新分类器的鲁棒性得到了很大提高,能更加准确地检测出车辆,而且由算法对未标记样本进行分类标记,不再需要人为标记,提高了车辆检测算法的自适应能力. To improve the adaptability of existing vehicle detection algorithms in complex traffic circumstances, a robust detection algorithm based on co-training from semi-supervised learning methods was proposed. First, according to a small number of humanly labeled samples, two classifiers were trained, which were AdaBoost based on Haar-like features and the SVM (support vector machines) based on HOG (histograms of oriented gradients) features, respectively, so that both of them had some identification ability. Second, on the basis of co-training from semi-supervised learning framework, the new samples gained from the two algorithms above were added to mutual sample sets to increase the number of training samples, and the train was repeated. Due to the redundancy these two features had, the detected positive and negative samples would contain the images which were missed out or falsely detected mutually. Because of the increasing number of samples, the robustness of the new re-training classifiers has been greatly improved so that the classifiers can detect the vehicles accurately. Besides, there will be no need to mark artificially, but to classify and mark the unlabeled samples by the algorithms. Therefore, it can highly improve the adaptability of vehicle detection algorithm.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第3期394-401,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61079001) 国家自然科学基金青年基金资助项目(60904069) 教育部高等学校博士学科点专项科研基金资助项目(20111103120015)
关键词 车辆检测 Co—training Haar—like特征 ADABOOST分类器 HOG特征 SVM分类器 vehicle detection co-training Haar-like feature AdaBoost classifier histograms of oriented gradients (HOG) feature support vector machines (SVM) classifier
  • 相关文献

参考文献13

  • 1CHANG Wen-chung, CHO Chih-wei. Online boosting for vehicle detection [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40 (3) : 892-902.
  • 2WANG Wei-hong, SHEN Chun-hua, ZHANG Jian, et al. A two-layer night-time vehicle detector [ C ]//Proceedings of the 2009 Digital Image Computing: Techniques and Applications. Piscataway: IEEE Computer Society, 2009 : 162-167.
  • 3WU Chun-peng, DUAN Li-juan, MIAO Jun, et al. Detection of front-view vehicle with occlusions using AdaBoost [ C ]// Proceedings 2009 International Conference on Information Engineering and Computer Science. Piscataway: IEEE Computer Society, 2009 : 1-4.
  • 4CHENG Hong, ZHENG Nan-ning, SUN Chong. Boosted Gabor features applied to vehicle detection [ C ] // Proceedings of the 18th International Conference on Pattern Recognition. Piscataway: Institute of Electrical and Electronics Engineers Inc. , 2006: 662-666.
  • 5KONG Fan-jing, YE Qi-xiang, ZHANG Ning, et al. On- road vehicle detection using histograms of multi-scale orientations [ C ] // Proceedings 2009 IEEE Youth Conference on Information, Computing and Telecommunication. Piscataway: IEEE Computer Society, 2009 : 212-215.
  • 6OLIVEIRA L, NUNES U. On integration of features and classifiers for robust vehicle detection [ C ]//Proceedings of the lhh International IEEE Conference on Intelligent Transportation Systems. Piscataway: Institute of Electrical and Electronics Engineers Inc. , 2008: 414-419.
  • 7VIOLA P, JONES M. Robust real-time face detection [ J]. International Journal of Computer Vision, 2004, 57 (2) : 137-154.
  • 8KROGEL M, SCHEFFFER T. Multi-relational learning, text mining, and semi-supervised learning for functional genomics [J]. Machine Learning, 2004, 57( 1/2): 61- 81.
  • 9JIN Li-zuo, BIAN Zhi-guo, LI Xiao-bing, et al. Online real AdaBoost with co-training for object tracking [ C ] //Proceedings of SPIE. Bellingham, WA : SPIE, 2009 : 1- 8.
  • 10詹永照,陈亚必.具有噪声过滤功能的协同训练半监督主动学习算法[J].模式识别与人工智能,2009,22(5):750-755. 被引量:7

二级参考文献10

  • 1Zhu Xiaojin. Semi-Supervised Learning Literature Survey. Technical Report, 1530, Madison, USA : University of Wisconsin at Madison. Department of Computer Sciences, 2006.
  • 2Blum A, Mitchell T. Combining Labeled and Unlabeled Data with Co-Training//Proc of the 11 th Annual Conference on Computational Learning Theory. Madison, USA, 1998 : 92 - 100.
  • 3Goldman S A, Zhou Yan. Enhancing Supervised Learning with Unlabeled Data// Proc of the 17th International Conference on Machine Learning. Stanford, USA, 2000 : 327 - 334.
  • 4Zhou Zhihua, Li Ming. Tri-Training: Exploiting Unlabeled Data Using Three Classifiers. IEEE Trans on Knowledge and Data Engineering, 2005, 17(11) : 1529 -1541.
  • 5Lewis D D, Gale W A. A Sequential Algorithm for Training Text Classifier//Proc of the 17th International Conference on Research and Development in Information Retrieval. Dublin, Ireland, 1994: 3 -12.
  • 6Kothari R, Jain V. Learning from Labeled and Unlabeled Data Using a Minimal Number of Queries. IEEE Trans on Neural Networks, 2003, 14(6) : 1496 - 1505.
  • 7Zhan Yongzhao, Ye Jingfu, Niu Dejiao, et al. Facial Expression Recognition Based on Gabor Wavelet Transformation and Elastic Templates Matching. International Journal of Image and Graphics, 2006, 6(1) : 125 -138.
  • 8Bilmes J A. Buried Markov Models for Speech Recognition//Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, USA, 1999 : 713 - 716.
  • 9陈耀东,王挺,陈火旺.半监督学习和主动学习相结合的浅层语义分析[J].中文信息学报,2008,22(2):70-75. 被引量:13
  • 10成科扬,文传军,詹永照.模糊深隐马尔可夫模型研究[J].计算机科学,2008,35(6):163-167. 被引量:3

共引文献6

同被引文献12

  • 1中华人民共和国公安部.GA36-2007,中华人民共和国机动车号牌[S].2007.
  • 2Du S,Ibrahim M,Shehata M,et al.Automatic license plate recognition(ALPR):A state-of-the-art review[J].IEEE Transactions on Circuits and Systems for Video Technology,2013,23(2):311-325.
  • 3Hofleitner A,Herring R,Bayen A.Arterial travel time forecast with streaming data:A hybrid approach of flow modeling and machine learning[J].Transportation Research Part B,2012,46:1097-1122.
  • 4王龙飞.基于车牌照的车辆出行轨迹分析方法与实践研究[D].西安:长安大学,2012.
  • 5Buch N,Velastin S A,Orwell J.A review of computer vision techniques for the analysis of urban traffic[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(3):920-939.
  • 6Ghosh N,Bhanu B.Incremental unsupervised threedimensional vehicle model learning from video[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(2):423-440.
  • 7Peng Y,Xu M,Ni Z,et al.Combining front vehicle detection with 3D pose estimation for a better driver assistance[J].International Journal of Advanced Robotic Systems,2012,93(9):1-15.
  • 8Alefs B,Schreiber D.Accurate speed measurement from vehicle trajectories using AdaBoost detection and robust template tracking[C]//Proceedings of IEEE Intelligent Transportation Systems Conference.Seattle,WA,USA:IEEE Press,2007:405-412.
  • 9Kamal A T,Farrell J A,Roy-Chowdhury A K.Information weighted consensus filters and their application in distributed camera networks[J].IEEE Transactions on Automatic Control,2013,58(12):3112-3125.
  • 10Kanhere N K,Birchfield S T.A taxonomy and analysis of camera calibration methods for traffic monitoring applications[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(2):441-452.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部