期刊文献+

USP制备高光电活性Ti掺杂Fe_2O_3薄膜

Highly photoelectric performance of Ti doped hematite thin films prepared by USP
下载PDF
导出
摘要 本文报道了采用超声喷雾裂解法(USP)法制备α-Fe2O3以及不同厚度的Ti掺杂α-Fe2O3薄膜,并通过XRD、XPS、SEM、IPCE表征了合成的薄膜。XRD测试结果表明,Ti掺杂和纯相Fe2O3均为α相并在(110)晶面优先生长;从AFM图中看出Fe2O3晶粒呈尖峰状垂直于平面排列;由XPS分析得知Ti离子在Fe2O3薄膜中以Ti4+和Ti3+两个价态存在;由光电效率表征可知,吸收光电转换效率(APCE)值是随着样品薄膜厚度增加而减小,在厚度为20nm时APCE为58%,对于粉末Fe2O3光催化材料是粒径尺寸越小光利用率越高;然而Fe2O3薄膜的IPCE值在厚度为60nm时最高达到23.5%,此时光利用效率最大。 Ti doped Fe2O3 thin films with different thickness were prepared by ultrasonic spray pyrolysis method. XRD, XPS, SEM and IPCE were used to characterize films. The results indicated that the film showed rhombohedral system, and there was a preferen- tial orientation of(110) direction. The peak like crystal grain grew vertically along the surface, with a height about 45nm. Ti atoms existed in the form of Ti++ and Ti3+ analyzed by XPS. absorbed photon to current efficiencies(APCE) decreased with the film thick- ness increasing. When the film thickness reached 20 nm, APCE was 58%, with regard to Fe2O3powder, the utilization of light be- came large with the grain size decreasing. However for theFe2O3 film, it showed the best IPCE when the film thickness was 60 nm.
出处 《化学研究与应用》 CAS CSCD 北大核心 2013年第3期328-332,共5页 Chemical Research and Application
基金 科技部863项目(2006AA05Z102)资助 教育部科技创新工程重大项目培育资金项目(707050)资助 成都市科技局攻关计划项目(10GGYB380GX-023 10GGYB828GX-023)资助
关键词 USP FE2O3 厚度 光催化 IPCE USP Fe2O3 thickness photocatalyst IPCE
  • 相关文献

参考文献11

  • 1Fujishima A. Electrochemical photolysis of water at a sem- iconductor electrode[ J]. Nature, 1972,238:37-38.
  • 2陈擘威,张艳辉,詹水华,彭德权,姜春萍,陈金伟,王瑞林.超声喷雾法制备掺Zn和未掺Zn α-Fe2O3薄膜的研究[J].化学研究与应用,2009,21(6):873-876. 被引量:3
  • 3Ingler, Baltrus J P, Khan S U M. Photoresponse of p-Type Zinc-Doped Iron (Ⅲ) Oxide Thin Films [ J ]. JACS, 2004, 126 (33) : 10238-10239.
  • 4刘小峰,姜春萍,杨鑫,练晓娟,康洪,刘尚军,彭德权,陈金伟,王瑞林.掺Ti和未掺Ti的α-Fe_2O_3薄膜光电性质的研究[J].化学研究与应用,2010,22(6):674-677. 被引量:1
  • 5Cesar I, Sivula K, Kay A, et al. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water split- ting[J]. J Physical Chemistry C,2008,113(2) :772-782.
  • 6Benko F A L J, Koffyberg F P. A comparison of photo- chemical properties of amorphous and polyerystalline ferric oxide[ J ]. Electrochemical Society, 1985, 132 ( 3 ) : 609- 613.
  • 7Mihailetchi V D, Wildeman J, Blom P W M. Space-charge limited photocurrent [ J ]. Physical Review Letters, 2005,94 (12) : 126602-126605.
  • 8Cherepy N J,Liston D B,Lovejoy J A,et al. Uhrafast stud- ies of photoexcited electron dynamics in γ-and ct-Fe203 semiconductor nanoparticles [ J ]. J Physical Chemistry B, 1998,102 (5) :770-776.
  • 9Cesar I,Kay A,Martinez J A G,et al. Translucent thin film Fe203 photoanodes for efficient water splitting by sun- light: nanostructure-directing effect of Si-doping [ J ]. JACS,2006,128 (14) :4582-4583.
  • 10Kleiman-Shwarsctein A, Huda M N, Walsh A, et al. Elec- trodepesited aluminum-doped ct-Fe203 photoelectrodes: experiment and theory [ J ]. Chemistry of Materials, 2009, 22(2) :510-517.

二级参考文献20

  • 1Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductor electrode [ J ]. Nature, 1972, 238: 37 -38.
  • 2Ingler J W B, Khan S U M. Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes in water splitting [ J ]. International Journal of Hydrogen Energy,2005,30 ( 8 ) : 821-827.
  • 3Ingler Jr W B, Khan S U M. Photoresponse of spray pyrolytically synthesized magnesium-doped iron (Ⅲ) oxide (p-Fe2O3) thin films under solar simulated light illumination [ J ]. Thin Solid Films, 2004, 461 ( 2 ) : 301-308.
  • 4Ingler W B, Bahrus J P, Khan S U M. Photoresponse of p-type zinc-doped iron (Ⅲ) oxide thin films [ J ]. J. Am. Chem. Soc. 2004,126 (33) : 10238-10239.
  • 5Kumari S ,Tripathi C ,Singh A P ,et al. Characterization of Zn-doped hernatite thin films for photoelectrochemical splitting of water [ J ]. Current Science ( Curt. Sci. ), 2006, 91 ( 8 ): 1062-1064.
  • 6Saroj K, Singh A P, Chanakya T, et al. Enhanced photoelectrochemical response of Zn-dotted hematite [ J ]. International Journal of Photoenergy,2007 ,2007 :6.
  • 7Cesar I, Sivula K, Kay A, et al. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting[J]. The Journal of Physical Chemistry C, 2009, 113(2) :772-782.
  • 8Beach J D, Collins R T, Turner J A. Band-edge potentials of n-type and p-type GaN [ J ]. Journal of The Electroanalytical Chemistry,2003,150 (7) : A899-A904.
  • 9Bansal A, Khaselev O, Turner J A. Photoelectrochemieal system studies [ J ]. Proceedings of the 2000 DOE Hydrogen Program Review,2000 ( NREL/CP-570-28890).
  • 10Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces [ J ]. J. Phys. Chem. 1996, 100(31 ) :13061-13078.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部