期刊文献+

C程序隐式规则自动提取与反例检测

Automatically Extracting Implicit Programming Rules and Detecting Violations from C Programs
下载PDF
导出
摘要 提出一种通用且高效的隐式规则自动提取与反例检测方法,使用频繁闭合项集挖掘技术挖掘包含多种程序元素的编程模式,然后由编程模式产生编程规则;引入正序规则的概念,以避免从同一个编程模式中产生多个冗余规则.在此基础上,提出一种高效的反例检测算法检测违反规则的程序片段.实验结果表明,该方法能够自动提取程序中存在的隐式编程规则,并快速有效地检测违反规则的反例. A general and efficient method is proposed to automatically extract the roles and detect violations to the rules extracted. Closed frequent itemset mining is applied to mine programming patterns. Then these patterns are used to generate programming rules. The concept of Positive Order Rule is introduced to avoid generating redundant roles from the same programming pattern. Based on these efforts, we also propose an efficient violations detection algorithm to detect program segments that are not consistent with the extracted roles. The experiment results on large software source code indicate that this method can automatically extract lots of implicit programming rules and also can efficiently detect the code segments that violate the extracted rules.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第2期248-254,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60673035) 高等学校博士学科点专项科研基金(No.20092302110040)
关键词 频繁闭合项集挖掘 程序规则提取 反例检测 软件缺陷检测 静态分析 frequent closed itemset mining programming roles extracting violations detecting software defects detecting static analysis
  • 相关文献

参考文献12

  • 1Acharya M, Xie T. Mining API error-handling specifications from source code [ A]. Proceedings of the 12th International Conference on Fundamental Approach to Software Engineering [ C]. Heidelberg: Springer-Verlag, 2009.370 - 384.
  • 2Thummalapenta S, Xie T. Mining exception-handling rules as sequence association rules IA]. Proceedings of the 31st Inter- national Conference on Software Engineering[ C]. Washington D C: IEEE Computer Society Press,2009.496 - 506.
  • 3Lu S,Park S,Zhou Y Y. MUVI: automatically inferring multi- variable access correlations and detecting related semantic and concurrency bugs [ A ]. Proceedings of 21st ACM SIGOPSSymposium on Operating Systems Principles[ C]. New York: ACM Press, 20T/. 103 - 116.
  • 4Li Z M, 2aou Y Y. PR-Miner: automatically extracting implicit programming rules and detecting violations in large software code [ A].13th ACM SIGSOFT Symposium on the Foundations of Software Enginerring[ C] .New York:ACM Press,2005.306 - 315.
  • 5Chang R Y, Podgursld A. Discovering programming rules and violations by mining international dependences [ J]. Journal of Software Maintenance and Evolution: Research and Practice, 2011,23(3) : 160 - 175.
  • 6Pei J, Hall J W, Mao R Y. CLOSET: an efficient algorithm for mining frequent closed itemsets [ A]. ACM SIGMOD Work- shop on Research Issues in Data Mining and Knowledge Dis- covery[ C] .New York: ACM Press,2000 21 - 30.
  • 7Wang J Y,Han J W,Pei J. CLOSE'r + :searching for the best slategies for mining frequent closed itemsets [ A]. Proceedings of the 9th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining[ C]. New York: ACM Press, 2003.236 - 245.
  • 8Graphne G,Zlau J F. High performance mining of maximal fre- quent iternsets[ A ]. ISAM03 Workshop on High Performance Data Mining: Pervasive and Data Stream Mining [ C ]. New York: ACM Press,2003.135 - 143.
  • 9Graphne G, Zhu J F. Efficiently using prefix-tress in mining frequent itemsets [A] .gs of the 12th ACM SIGSOFF Symposium on Operating Systems Design and Implementation [C] .New York: ACM Press,2003.110 - 119.
  • 10Han J W, Pei J, Yin Y W. Mining frequent patterns without candidate generation [ A] .Proceedings of the 2000 ACM SIG- MOD International Conference on Management of Data[ C ]. New York:ACM Press,2000.1 - 12.

二级参考文献16

  • 1[1]U M Fayyad, G Piatetsky-Shapiro, P Smyth. From Data Mining to Knowledge Discovery:an overview, Advances in Knowledge Discovery and Data Mining[ M]. AAAI/MIT Press, 1996.
  • 2[2]The internet address of INLEN syetem [ DB/OL]. http://www. mli.gmu. edu/projects/inlen. html.
  • 3[3]J W Grzymala-Busse. Rough sets in knowledge discovery[J]. Physica-Verlag, 1998:562 - 565.
  • 4[4]The internet address of Clementine[DB/OL]. http://www. spss. com/clementine/.
  • 5[5]Otis Port. Virtual prospecting[N].Business Week, New York, MARCH23.2001.
  • 6[6]SHI Zhong-zhi. AI prospecting [ C ]. AI Prospecting in China, Beijin:Beijing University of Posts and telecommunications Press,2001.
  • 7[7]The internet address of US PATENT&TRADEMARK OFFICE DATABASE[ DB/OL]. http://www. uspto. gov/patft/index. html.
  • 8[8]HAN Jia-wei, Micheline Kamber. Data Mining: Concepts and Techniques [ M ]. Higher Education Press, 2001.
  • 9[9]M B Eisen, P T Spellman, P O Brown, D Botstein. Cluster analysis and display of genome-wide expression patterns[J]. Proc. Natl. Acad. Sci.USA, 1998 - 95:14863 - 14868.
  • 10[10]X Wen, S Fuhrman, G S Michaels, D B Carr, S Smith, J L Barker, R Somogyi. Large-scale temporal gene expression mapping of central nervous system development [ J ]. Proc. Natl. Acad. Sci. USA, 1998 - 95:334 - 339.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部