期刊文献+

基于改进的小波变换的南极冰盖冻融探测 被引量:3

Antarctic Ice-Sheet Freeze-Thaw Detection Based on Improved Wavelet Transform
下载PDF
导出
摘要 小波变换模型算法中的双高斯模型拟合干湿雪分类的最优阈值时,受初始值影响且典型样本区的选取比较费时,针对这些缺点提出了自动阈值分割的改进的小波变换算法,即用广义高斯模型自动拟合干湿雪分类的最优阈值.该算法继承和发展了冰盖冻融探测无需依赖于实测数据的优点,更好地实现了南极地区冰盖冻融监测系统建设的业务化运行目标.通过对改进前后的结果对比分析表明:改进后的方法与原方法相比,不仅提高了冰盖冻融探测方法的计算效率、实用性和可操作性,而且还在一定程度上提高了冰盖冻融探测的精度. When the donble-Gaussian model of the current wavelet-transform algorithm fits the optimal threshold value of the dry and wet snow classification,it is easily affected by the initial value and has the shortcomings of consuming more time in selecting the typical sample zones.According to the fact,this paper proposed the improved wavelet-lransforrn algorithm for the automatic threshold segmentation, that is, generalized Gaussian model automalically fits the optimal wet and dry snow classification threshold. The algorithm inherits and develops the advantage of ice-sheet freeze-thaw detection, which does not rely on the measured data and achieves the goal of Antarctic ice-sheet monitoring system business more effectively.By comparing and analyzing of the two algo-ithms, we can see that the improved algorithm improves the computational efficiency, usability and otmability in the ice-sheet freeze-thaw detection as well as the accuracy of detection to some extent.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第2期402-406,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.41076129) 国家863高技术研究发展计划(No.2008AA121702)
关键词 冰盖冻融探测 最优阈值 改进的小波变换 广义高斯模型 ice-sheet freeze-thaw detection optimal threshold improved wavelet transform generalized Gaussian model
  • 相关文献

参考文献13

  • 1Liu H, Wang L, Jezek K C. Wavelet-transform based edge de- tection approach to derivation of snowmelt onset, end and dura- tion from satellite passive microwave measurements [J ]. Inter- national Journal of Remote Sensing, 2005, 26 ( 21 ) : 4639 -ZIf060 .
  • 2Liu H, Wang L, Jezek K C. Spatiotemporal variafiom of snowmelt in Antarctica dedved from satellite scanning multi- channel microwave radiometer and special sensor microwave imager data ( 1978 - 2(104) [ J ]. Journal of Geophysical Re- search, 2006,111, R)1003:1 - 20.
  • 3Wang L. Deriving spatially varying thresholds for real-time snowmelt detection from space-borne passive microwave obser- vations [ J] .Remote Sensing Letlers,2012,3 (4) :305 - 313.
  • 4Tedesco M, Abdalati W, ZwaUy H J. Persistent surface snowmelt over Antarctica ( 1987 - 2006) from 19.35 GHz brightness temperatures [J ]. Geophysical Research Letters, 2007,34,L18504:1 - 6.
  • 5Tedesco M. Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperattm (19792008) [ J] .Remote Sensing of Environment, 2009,113 (5):979-997.
  • 6Aschraft I S, Long D G. Comparison of methods for melt detec- tion over Greenland using active and passive microwave mea- surements [ J]. International Journal of Remote Sensing, 2006, 27(12) :2469 - 2488.
  • 7Takala M, Pulliainen J, Huttunen M, et al. Detecting the onset of snow-melt using SSM/I data and the self-organizing map [J ]. International Journal of Remote Sensing,2008,29 (3) : 755 - 766.
  • 8Takala M, Pulliainen J, Metsamaki S J, et al. Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007 [J ]. IDT;.F. Transaclions on Geo- science and Remote Sensing, 2009,47 ( 9 ) : 2996 - 3007.
  • 9黄永辉,吴季,董晓龙.综合孔径微波辐射计顺轨方向亮温反演算法的研究[J].电子学报,2000,28(12):108-110. 被引量:7
  • 10连可,王厚军,龙兵.一种基于小波变换模极大值的估计Lipschitz指数新方法[J].电子学报,2008,36(1):106-110. 被引量:10

二级参考文献17

  • 1倪光正,电磁场数值计算,1996年
  • 2S Mallat, W L Hwang. Singularity detection and processing with wavelets [ J]. IEEE Transaction on Inf Theory, 1992,38 (2) :617 - 643.
  • 3A Arneodo, E Bacry, J F Muzy. The thesmodynamics ofractals revisited with wavelets [J]. Plays A, 1995,213 ( 1 - 2) : 232 - 275.
  • 4H Asada, M Brady. The curvature primal sketch [ J ]. IEEE Transaction on Pattern Anal Mach Intell, 1986,8( 1 ):2- 14.
  • 5C L Tu, W L Hwang. Analysis of singularities from modulus maxima of complex wavelets [ J ]. IEEE Transaction on Inf Theory, 2005,51 (3) : 1049 - 1062.
  • 6S Mallat. A Wavelet Tour of Signal Processing [ M ]. San Diego, CA: Academic, 1999. 163 - 219.
  • 7S Mallat, S Zhong. Characterization of signals from multiscale edges [ J ]. IEEE Transaction on Pattem Anal Mach Intell, 1992,14(7) :710- 732.
  • 8J Zhang, C X Zheng. Extracting evoked potentials with the singularity detection technique [J]. IEEE Engineering in Medicine and Biology, 1997,16(5) : 155 - 161.
  • 9E Chassande-Mottin, P Flandrin. On the time-frequency detection of chirps [ J]. Applied and Computational Harmonic Analysis, 1999,6(2) :252 - 281.
  • 10H B Nugraha, A Z R Langi. A procedure for singularity measurement using wavelet [ A ]. In Proceeding APCCAS' 02 [ C]. Bali, Indonesia: IEEE. Press, 2002.407 - 410.

共引文献15

同被引文献23

  • 1Wang L. Deriving spatially varying thresholds for real-time snowmelt detection from space-borne passive microwave observations [J]. Remote Sensing Letters, 2012,3(4):305 -313.
  • 2Dupont F, Royer A, Langlois A, et al. Monitoring the melt season length of the Barnes Ice Cap over the 1979-2010period using active and passive microwave remote sensing data [J]. Hydrological Processes, 2012,26(17):2643-2652.
  • 3Semmens K A, Ramage J, Bartsch A, et al. Early snowmelt events:detection, distribution, and significance in a major sub-arctic watershed [J]. Environmental Research Letters, 2013,8(1):1-11.
  • 4Tedesco M. Assessment and Development of Snowmelt Retrieval Algorithms over Antarctica from K band Space Borne Brightness Temperature (1979-2008) [J]. Remote Sensing of Environment, 2009,113(5):979-997.
  • 5Abdaati W, Steffen K. Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data [J]. Journal of Climate. 1997,10 (2):165-175.
  • 6Abdaati W, Steffen K. Greenland ice sheet melt extent: 1979 -999 [J]. Journal of Geophysical Research, 2001,106(D24):33983- 33989.
  • 7Joshi M, Merry C J, Jezek K C, et al. An edge detection technique to estimate melt extent on the Greenland ice sheet using passive microwave data. Geophysical [J]. Geophysica Research Letters, 2001,28(18):3495-3500.
  • 8Torinesi O, Fily M, Genthon C. lnterannual variability and trend of the Antarctic summer melting period from 20years of spaceborne microwave data [J]. Journal of Climate, 2003,16(7): 1047-1060.
  • 9Liu H X, Wang L, Jezek K C. Wavelet-transform based edge detection approach to derivation of snowmelt onset, end and duration from satellite passive microwave measurements [J]. International Journal of Remote Sensing, 2005,26(21):4639- 4660.
  • 10Liu H X, Wang L, Jezek K C. Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978-2004) [J]. Journal of Geophysical Research, 2006,111(F1):1- 20.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部