期刊文献+

光子晶体耦合腔波导低色散慢光的研究

Study on the Slow Light Characteristics of Low-Dispersion Photonic Crystal Coupled-Cavity Waveguide
下载PDF
导出
摘要 设计一种由4孔微腔组成的二维三角晶格光子晶体耦合腔波导,应用时域有限差分法(FDTD)模拟计算TE偏振光的透射谱,获得波长在1.55941μm处最大群折射率ng=1460.31、群速度vg=c/1460.31的慢光.该光子晶体耦合腔波导传输光的群折射率随波长(ng-λ)变化关系呈现"U"型结构,在"U"型底部出现中心波长1.55917μm、平均群折射率~ng=721.92、带宽Δλ=0.35nm、平坦率σ=0.02%的低色散慢光。进一步研究表明,移动耦合腔波导第一排空气柱的位置不仅可以在"U"型底部区域产生中心波长1.60412μm、带宽Δλ=6.67nm、平均群折射率ng=41.05的低色散慢光,而且可以在波长1.56177μm处获得最大群折射率ng=2173.12、群速度vg=c/2173.12的慢光. We designed a two-dimensional triangular lattice photonic crystal coupled-cavity waveguide of four hole micro cavities. Transmission Spectra of TE-polarized light are calculated by using the finite-difference time- domain (FDTD) method and slow light with a maximum group ng = 1460.31 index, maximum group velocity vg = c/1460.31 at wavelength 1. 55941/xm are obtained. This photonic crystal coupled-cavity waveguide can produce "U" type group index-frequency curves with low dispersion slow light area at the bottom of the "U" type curves of which the central wavelength of the area is 1. 55917~m, average group index ng = 721.92 , band gap A), = 0.35 nm and flat ratio a = 0.02% by calculation. In this paper, we replace the location of first row of air hole in coupled cavity waveguide to investigate the change of low-dispersion slow light. The results not only show that the central wavelength of the area is 1. 60412μm, average group index ng = 41.05, band gap ng = 6.67 nm but also slow light with a maximum group index ng = 2173.12,. maximum group velocity vg = c/2173.12 at wavelength 1. 56177μm are obtained.
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2013年第1期30-35,共6页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金重大研究计划项目(91121019) 广东省科技计划项目(2010B080701066)
关键词 光子晶体耦合腔波导 低色散 慢光速 photonic crystal coupled-cavity waveguide low-dispersion slow light
  • 相关文献

参考文献4

二级参考文献53

  • 1张昌莘.在均匀电场中氢原子光谱的分裂规律[J].安徽师范大学学报(自然科学版),2005,28(4):407-410. 被引量:4
  • 2张昌莘.在均匀强磁场中氢原子塞曼效应久期方程的简化公式[J].原子与分子物理学报,2006,23(1):157-162. 被引量:7
  • 3Yanik M F and Fan S H 2004 Phys. Rev. Lett. 92 083901.
  • 4Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 65 438.
  • 5Baba T 2008 Nature Photon. 2 465.
  • 6Baba T 2007 Nature Photon. 1 11.
  • 7Chiao R Y and Milonni P W 2002 Opt. Photon. News 13 27.
  • 8Zhang C, Huang Y, Mao X Y, Cui K Y, Huang Y D, Zhang W, Peng J D 2009 Chin. Phys. Lett. 26 074216.
  • 9Mao X Y, Zhang G Y, Huang Y D, Zhang W, Peng J D 2008 Chin. Phys. Lett. 25 4311.
  • 10Painter O Lee R K, Scherer A, Yariv A, O'Brien J D, Dapkus P D. Kim I 1999 Science 284 1819.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部