期刊文献+

机器人视觉Kalman和FIR滤波稳像算法设计与比较 被引量:2

Algorithm Design and Comparison of Kalman and FIR Filter Methods for Image Stabilization of Robot Vision
下载PDF
导出
摘要 稳像是提高基于视觉的移动机器人作业精度的关键。论文建立了完整的稳像算法流程,包含图像运动学模型、KLT特征提取、SAD特征匹配和滤波算法;设计了运动参数的Kalman和FIR滤波算法;并利用MATLAB实现了运动参数的Kalman和FIR滤波器;仿真验证和对比分析了Kalman和FIR滤波器对运动参数的去抖效果。结果表明,机器人视觉稳像中,Kalman滤波效果优于FIR滤波。用VC++和OpenCV编程实现了基于Kalman滤波的机器人视觉稳像软件,在双机器人移动平台上开展了实验,稳像计算时间小于视频采样时间,系统满足机器人对接作业实时性和精度要求。 Image stabilization is the key for accurate docking operations of robots with vision. The whole algorithm of image stabilization is established, including images kinematics model, KLT feature pixels detecting, SAD feature pixels matching and filters. Kalman and FIR filters are designed for smoothing images motion parameters and built in MATLAB. Simulation of filter of motion un-intended parameters is implemented to indicate removing jitter effect. Kalman filter is compared with FIR filter. Comparison curves and tables are given, which demonstrate that Kalman filter is better than FIR in robot vision image stabilization process. Based on VC++ and OpenCV, image stabilization software is programmed, and experiments are completed on double moving robots docking operation platform. The algorithm running time is less than the sampling period, and the precision and real-time demands are contented.
出处 《图学学报》 CSCD 北大核心 2013年第2期21-25,共5页 Journal of Graphics
基金 国家自然科学基金资助项目(50905170) 科技部质检公益科研资助项目(201210076-2)
关键词 机器视觉 稳像 机器人对接 滤波器建模 抖动去除 machine vision image stabilization robot docking filter modeling jitter removing
  • 相关文献

参考文献14

  • 1陈茹雯,黄仁,张志胜,史金飞,陈自新.基于数学模型的视觉测量系统图像畸变校正方法[J].机械工程学报,2009,45(7):243-248. 被引量:7
  • 2Corsini G, Diani M, Masini A. Video sequence stabilization for real-time remote sensing applications [C]// Geoscience and Remote Sensing Symposium: IEEE conference, 2006: 980-983.
  • 3Liu Lingqiao, Fu Zhizhong, Qian Wei. A new motion estimation method for video stabilization [J]. Computer Science and Computational Technology, 2008, 2(1): 440-444.
  • 4Tico M, Alenius S, Vehvilainen M. Method of motion estimation for image stabilization [J]. Acoustics, Speech and Signal Processing, 2006, 2(2): 277-280.
  • 5Essannnouni F, Salam A, Aboutajdine D. A new fast full search block matching algorithm using frequencydomain [J]. Signal Processing and Its Applications, 2005, 8(2): 559-562.
  • 6王云丽,张鑫,高超,王晖,张茂军.航拍视频拼图中基于特征匹配的全局运动估计方法[J].航空学报,2008,29(5):1218-1225. 被引量:8
  • 7Kuo Tienying, Wang Chunghsin. Fast local motion estimation and robust global motion decision for digital image stabilization [J]. International Conference on Intelligent Hiding and Multimedia Signal Processing, 2008, 232(10): 441-444.
  • 8钟平,于前洋,金光.动态图像序列间运动补偿方法探讨[J].光学技术,2007,29(7):442-443.
  • 9冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 10赵文华,姚天翔,叶秀清,等.RANSAC算法在视频去抖中的应用[J】.电路与系统,2005,10(4):91-94.

二级参考文献55

共引文献37

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部