期刊文献+

缺陷板材非规则件优化排样 被引量:3

Optimal Packing of Irregular Parts on Plates with Defects
下载PDF
导出
摘要 针对理论上属于NPC问题的非规则件优化排样问题,论文提出一种基于小生境技术的自适应遗传模拟退火算法与基于内靠接临界多边形最低点的启发式布局算法相结合的方法。考虑到算法中交叉概率和变异概率的选择影响到算法收敛性,提出了自适应的交叉概率和变异概率,通过基于小生境技术的遗传模拟退火算法对非规则件排样的最优顺序和各自的旋转角度进行优化搜索。将非规则件定位在有缺陷原材料和非规则件多边形的内靠接临界多边形最低点以实现个体的解码,同时避开了原材料表面缺陷。排样实例表明,该优化排样算法行之有效,具有广泛的适应性。 Aiming at the optimal packing problem of irregular parts, known as a NP-complete problem, an approach is presented, which combines adaptive niche genetic simulated annealing algorithm with a heuristic packing algorithm based on the lowest point of inside no fit polygon. Considering that the choice of crossover probability and mutation probability will affect algorithm convergence, the adaptive crossover probability and the adaptive mutation probability are putted forward. The proposed approach automatically looks for the best sequence of the irregular parts and each part's optimum rotation angle by the genetic simulated annealing algorithm which is based on the niche technology. The lowest point of inside no fit polygon, which is created by the damaged raw material polygon and the irregular part polygon, is selected to locate the part. Meanwhile, the overlap of the part and the surface defect of raw material are avoided. Examples indicate that the approach is effective and practical.
出处 《图学学报》 CSCD 北大核心 2013年第2期31-37,共7页 Journal of Graphics
基金 国家自然科学基金资助项目(50574019) 国家高技术研究发展计划(863计划)资助项目(2008AA04Z135) 中央高校基本科研业务费专项资金资助项目(N100603002)
关键词 非规则件优化排样 小生境技术 遗传模拟退火算法 启发式布局算法 临界多边形 optimal packing of irregular parts niche technology genetic simulated annealing algorithm heuristic packing algorithm no fit polygon
  • 相关文献

参考文献14

  • 1Adamowicz M. The optimal two dimensional allocation of irregular, multiple connected shapes with linear, logical and geometric constrains [D]. New York New York University, 1969.
  • 2Liu D S, Tan K C, Huang S Y, et al. On solving multiobjective bin packing problems using evolutionary particle swarm optimization [J]. European Journal of Operational Research, 2008, 190(2): 357 382.
  • 3李明,宋成芳,周泽魁.二维不规则零件排样问题的粒子群算法求解[J].江南大学学报(自然科学版),2005,4(3):266-269. 被引量:10
  • 4Wang Chunxi, Cao Yuedong, Zha Jianzhong. Neural algorithms of two dimensional packing [C]// Proceeding of the 3rd World Congress on Intelligent Control and Automation. Hefei, China, 2000: 1127-1131.
  • 5史俊友,苏传生,翟红岩.不规则零件优化排样的神经网络混合优化算法[J].工程设计学报,2009,16(4):271-275. 被引量:3
  • 6Jakobs S. On genetic algorithms for the packing of polygon [J]. European Journal of Operational Research, 1996, 88(1): 165-181.
  • 7贾志欣,殷国富,罗阳.二维不规则零件排样问题的遗传算法求解[J].计算机辅助设计与图形学学报,2002,14(5):467-470. 被引量:104
  • 8Hopper E, Turton H. A review of the application ofmeta-heuristic algorithms to 2D regular and irregular strip packing problems [J]. Artificial Intelligence Review, 2001, 16: 257-300.
  • 9Bekiroglu S, Debe T, Ayvaz Y. Implementation of different encoding types on structural optimization based on adaptive genetic algorithm [J]. Finite Elements in Analysis and Desigh, 2009, 45(11): 826-835.
  • 10Lee Chienpang, Lin Wenshin, Chen Yuhmin, et al. Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method [J]. Expert Systems with Applications, 201 I, 38(5): 4661-4667.

二级参考文献26

  • 1黄兆龙.用启发算法和神经网络法解决二维不规则零件排样问题[J].微计算机信息,2004,20(7):118-119. 被引量:13
  • 2王宏达,尚久浩,樊养余.智能排样算法分析与展望[J].机电工程技术,2004,33(10):9-11. 被引量:5
  • 3胡华,蔡昕,姚骏.任意连通多边形的靠接算法[J].计算机学报,1995,18(11):867-874. 被引量:10
  • 4史俊友,冯美贵.二维不规则件优化排样的小生境遗传算法[J].工程设计学报,2007,14(2):170-174. 被引量:9
  • 5NELL Julia A Ben, DOWNS-LAND Kathryn A, DOWNS-LAND William B. The irregular cutting-stock problem-a new procedure for deriving the no-fit polygon[J]. Computers and Operations Research, 2001,28 : 271-287.
  • 6冯美贵.基于NGSA算法的不规则件优化排样系统的研究[D].青岛:青岛科技大学,2006.
  • 7周培德.计算几何-算法分析与设计[M].北京:清华大学出版社,1999..
  • 8Hopper E, Turton B. A genetic algorithm for a 2D industrial packing problem[J]. Computers and Industrial Engineering, 1999, 37(1-2): 375-378.
  • 9Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc IEEE Int'l Conf. on Neural Networks[C]. Piscataway:IEEE Service Center, 1995, 1942-1948.
  • 10Eberhart R C, Shi Y. Particle swarm optimization: development, applications and resources[A]. Proc Congress on Evolutionary Computation[C].Seoul:IEEE Service Center, 2001, 81-86.

共引文献120

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部