期刊文献+

多焦点圆及其椭圆和卵圆 被引量:4

Multi-focus Circle,Ellipse and Ovals
下载PDF
导出
摘要 卵圆是人们熟悉而尚未认识的基本图形。为探讨对卵圆的认识,论文提出多焦点圆概念,以多焦点圆的原理和方法,揭示标准椭圆和卵圆的内在规律。椭圆有线性两焦点和棱形四焦点两种标准类型,卵圆是特定条件的纺锤形四焦点圆。通过分析和建立标准椭圆与卵圆的参数与特征参数关系,给出一种特殊的参数模拟计算方法,并列举实例,对椭圆和卵圆有了新的基本认识。 Ovals are familiar but not yet well-known basic graphics. To explore the understanding for them the concept of multi-focus circle is put forward to explore the inherent properties of the standard ellipse and ovals. Ellipses have two standard types, linear two focuses and rhombus four focuses, and the oval is the specific fusiform four focus circle. Based on the analysis, a special kind of parameter simulation deepens the basic understanding for ovals. method and some examples are given, which
作者 管贤根 管杰
出处 《图学学报》 CSCD 北大核心 2013年第2期52-64,共13页 Journal of Graphics
关键词 多焦点圆 椭圆 卵圆 环线 焦点多边形 组合曲线 many focus round oval egg circle loop focus polygon combination curve
  • 相关文献

参考文献3

  • 1刘绍学.数学2圆与方程[M】.北京:人民教育出版社.2007:118-122.
  • 2刘绍学.数学选修2-1椭圆[M】.北京:人民教育出版社,2007:38-40.
  • 3百度百科.椭圆周长[EB/OL].http://baike.baidu.corn/view/1284699.htm,2007-11-30/2012.10.26.

同被引文献15

  • 1宋业存,祝燕琴.一种生成卵形曲线的方法[J].工程图学学报,2006,27(1):160-163. 被引量:3
  • 2吴光磊 丁石孙.解析几何[M].北京:人民教育出版社,1979.180-210.
  • 3Barrowclough O J D. A basis for the implicit representationof planar rational cubic Bézier curves [J]. Computer AidedGeometric Design, 2014, 31(3/4): 148-167.
  • 4Eyal K, Trevor H, Haim W. 3-D curve matching usingsplines [J]. Journal of Robotic Systems, 1991, 8(6):723-743.
  • 5Cohen F S, Huang Z, Yang Z. Invariant matching andidentification of curves using B-splines curverepresentation [J]. IEEE Transactions on ImageProcessing, 1995, 4(1): 1-10.
  • 6Sederberg T W, Chen F L. Implicitization using movingcurves and surfaces [C].Computer Graphics, 29(AnnualConference Series), Proceeding of Siggraph’ 1995. NewYork: ACM Press, 1995: 301-308.
  • 7Sederberg T W, Anderson D C, Goldman R N.Implicitization, inversion, and intersection of planarrational cubic curves [J]. Computer Vision, Graphics,and Image Processing, 1985, 31(1): 89-102.
  • 8Floater M S. Rational cubic implicitization [M]. In:Daehlen M, Lyche T, Schumaker L. (Eds.), MathematicalMethods for Curves and Surfaces. Nashville, TN, US:Vanderbilt University Press, 1995: 1-9.
  • 9Busé L, Ba T L. Matrix-based implicit representations ofrational algebraic curves and applications [J]. ComputerAided Geometric Design, 2010, 27(9): 681-699.
  • 10Tsujiy S, Matsumoto F. Detection of ellipses by amodified Hough transform [J]. IEEE Transactions onComputer, 1978, 27(9): 777-781.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部