期刊文献+

转录共激活子p300及表观修饰在高糖致人系膜细胞代谢记忆中的汇聚作用 被引量:3

Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose
下载PDF
导出
摘要 目的以人系膜细胞(HMCs)作为体外模拟代谢记忆的研究对象,观察转录共激活子p300及组蛋白乙酰化蛋白H3(Ac-H3)、Ac-H4的表达规律,并探讨p300在其中的潜在汇集点作用。方法将培养的HMCs按以下分组处理:①高糖诱导代谢记忆模型,分为正糖组(NG,5.5mmol/L D-葡萄糖×2d)、渗透压组(LG,NG+20mmol/L L-葡萄糖×2d),高糖组(HG,25mmol/L D-葡萄糖×2d)、记忆组(M1、M2、M3组,25mmol/L D-葡萄糖×2d+5.5mmol/L D-葡萄糖×3、6、9d)、持续正糖组(NC,5.5mmol/L D-葡萄糖×9d)。②糖其化终产物记忆模型,分为正糖组(NG,5.5mmol/L D-葡萄糖×2d);正糖+AGEs组(AGEs,5.5mmol/L D-葡萄糖+250μg/ml AGEs×2d);AGEs记忆组(AGEs-M,5.5mmol/L D-葡萄糖+250μg/ml AGEs×2d+5.5mmol/L D-葡萄糖×3d);BSA组(NG+BSA,给予同浓度BSA对照)。③H2O2模拟氧化应激记忆模型,分为正糖组(NG,5.5mmol/L D-葡萄糖×30min);正糖+H2O2组(H2O2,5.5mmol/L D-葡萄糖+100μmol/L H2O2×30min);H2O2记忆组(H2O2-M,5.5mmol/L D-葡萄糖+100μmol/L H2O2×30min+5.5mmol/L D-葡萄糖×3d);正糖对照组(NG3,5.5mmol/L D-葡萄糖×3d)。④蛋白激酶C(PKC)β2激活记忆模型,分为正糖组(NG,5.5mmol/L D-葡萄糖×2d);高糖组(HG,25mmol/L D-葡萄糖×2d);记忆组(M,25mmol/L D-葡萄糖×2d+5.5mmol/L D-葡萄糖×3d);空载体记忆组(HN,25mmol/L D-葡萄糖+Ad5-null×2d+5.5mmol/L D-葡萄糖×3d);PKCβ2激活记忆组(PO,25mmol/L D-葡萄糖+Ad5-PKCβ2×2d+5.5mmol/L D-葡萄糖×3d);PKCβ2抑制剂记忆组(PI,25mmol/L D-葡萄糖×2d+10μmol/L CGP53353+5.5mmol/L D-葡萄糖×3d)。采用二氢二氯荧光素(DCFDA)及酶标仪检测细胞内活性氧(ROS)的表达。Western blotting检测各组细胞p300、Ac-H3和Ac-H4及PKCβ2蛋白的表达水平。结果 HG组p300、Ac-H3和Ac-H4蛋白表达增加,分别较NG组增加了1.15倍、0.93倍和0.87倍(P<0.05),同时伴有PKCβ2蛋白及胞内ROS水平上调;M1、M2、M3组p300、Ac-H3、Ac-H4、PKCβ2蛋白水平及ROS表达水平与NG组比较仍显著升高,即使M3组亦较NG组分别增加75%、49%、47%、98%和48%(P<0.05)。AGEs组p300、Ac-H3和Ac-H4蛋白表达上调,较对照组分别升高了1.73倍、1.08倍和1.05倍(P<0.05),AGE-M组各蛋白较对照组分别增加了1.47倍、0.95倍和1.03倍(P<0.05)。H2O2组p300、Ac-H3和Ac-H4蛋白表达均升高,较对照组分别升高了1.03倍、0.85倍和0.79倍(P<0.05),而H2O2-M组各蛋白表达较对照组的差异无统计学意义。与M组比较,PO组p300、Ac-H3和Ac-H4蛋白表达进一步上调,分别为M组的1.25倍、1.06倍和1.10倍(P<0.05),选择性PKCβ2抑制剂CGP53353可以显著降低上述蛋白表达。结论 HMCs存在转录共激活子p300及表观修饰持续活化的记忆效应,p300可能系高糖致生化代谢及表观遗传记忆刺激的汇聚点。 Objective To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3) and Ac-H4 in human renal mesangial cell (HMCs) as imitative “metabolic memory” in vitro, and explore the potential roleof convergence point of p300. Methods The HMCs were divided into the following groups: ① High glucose metabolic memory model: normal glucose group (NG, S.Smmol/L D-glucose ×2d), high glucose group (HG, 25mmol/L D-glucose ×2d), memory groups (M1, M2, M3, 25mmol/L D-glucose ×2days + 5.5mmol/L D-glucose × 3d, 6d or 9d), persisting normal glucose group (NG, 5.5mmol/L D-glucose ×9d). ② Advanced glycation end products memory model: normal glucose group (NG, 5.5mmo1/ L D-glucose ×2d), NG+AGEs group (AGEs, 5.5mmol/L D-glucose+250μg/ml AGEs ×2d); AGEs memory group (AGEs-M, 5.Smmol/L D-glucose + 250μg/ml AGEs ×2d + S.Smmol/L D-glucose ×3d); BSA control group (NG+BSA, S.Smmol/L D-glucose + 250μg/ml BSA×2d). ③H2O2 was used to simulate oxidative stress memory model: normal glucose group (NG, 5.5mmol/L D-glucose ×2d), NG+H202 group (H202, 5.5mmol/L D-glucose +100μmol/L H2O2 ×30min); H2O2 memory group [(5.5mmol/ L D-glucose + 100μmol/L H2O2 × 30min) + 5.5mmol/L D-glucose ×3d]; normal glucose control group (NG3, 5.5mmol/L D- glucose ×3d). ④ Transfection with PKCβ2 memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d); high glucose group (HG, 25mmol/L D-glucose×2d); memory group (M, 25mmol/L D-glucose ×2d + 5.5mmol/L D-glucose×3d); AdS-null memory group (HN, 25mmol/L D-glucose + AdS-null ×2d + 5.5mmol/L D-glucose×3d); PKCβ2 memory group (PO, 25mmol/L D-glucose + AdS-PKCβ2×2d + 5.5mmol/L D-glucose ×3d); inhibitor of PKCβ2 memory group (PI, 25mmol/L D-glucose ×2d + 10μmol/L CGP53353 + 5.5mmol/L D-glucose×3d). The expression ofintracellular reactive oxygen species (ROS) was detected by fluorescence microscope and fluorescence microplate reader. The expression levels of p300, Ac-H3, Ac-H4 and PKCβ2 proteins were determined by Western blotting. Results The expression levels of p300, Ac-H3 and Ac-H4 protein in HG group increased, being 2.15, 1.93 and 1.87 fold of those in group NG (P〈0.05), accompanying with the up-regulation of PKCβ2 protein and ROS levels in HG group. The p300, Ac-H3, Ac-H4, PKCβ2 protein expression and ROS levels in M1, M2, M3 group were higher than those in NG group, and was 1.75, 1.49, 1.47, 1.98 and 1.48 fold higher in M3 group than in NG group. The protein expressions of p300, Ac-H3 and Ac-H4 in AGEs group were increased by 1.73, 1.08 and 1.08 folds, and in AGE-M group increased by 1.47, 0.95 and 1.03 folds of that in control group (P〈0.05). The protein expression levels of p300, Ac-H3 and Ac-H4 in H2O2 group increased by 1.03, 0.85 and 0.79 folds of those in control group (P〈0.05). However, no significantly difference in these indices was found between HEO2-M and control groups. The protein expression levels of p300, Ac-H3 and Ac-H4 in PO group increased more obviously by 1.25, 1.06 and 1.10 folds of those in M group (P〈0.05). However, the elective PKCβ2 inhibitor CGPS33S3 could lower those indices significantly. Conclusion Persistent activation of transcriptional coactivator p300 and apparent modification may be normalized in HMCs. p300 may be the convergent point of glucose-induced metabolic “memory” stimulations.
出处 《解放军医学杂志》 CAS CSCD 北大核心 2013年第3期173-179,共7页 Medical Journal of Chinese People's Liberation Army
基金 国家自然科学基金(30570877) 眼科学重庆市市级重点实验室在本研究中给予的支持~~
关键词 代谢记忆 p300-CBP转录因子 氧化性应激 蛋白激酶C 糖基化终产物 高级 metabolic memory p300-CBP transcription factors oxidative stress protein kinase C glycosylation endproducts, advanced
  • 相关文献

参考文献19

  • 1Diabetes Control and Complications Trial Research Group. Theeffect of intensive treatment of diabetes on the developmentof long-term complications in insulin-dependent diabetesmellitus[j]. N EnglJ Med, 1993, 329(14): 977-986.
  • 2Diabetes Control and Complications Trial/Epidemiology ofDiabetes Interventions and Complications Research Group.Retinopathy and nephropathy in patients with type 1 diabetesfour years after a trial of intensive therapy[j]. N Engl J Med,2000, 342(6): 381-389.
  • 3Tonna S, El-Osta A, Cooper ME, et al. Metabolic memoryand diabetic nephropathy: potential role for epigeneticmechanisms[j]. Nat Rev Nephrol, 2010, 6(6): 332-341.
  • 4Turgut F, Bolton WK. Potential new therapeutic agents fordiabetic kidney disease[j]. Am J Kidney Dis, 2010, 55(5): 928-940.
  • 5Kaur H, Chen S, Xin X, et al. Diabetes-induced extracellularmatrix protein expression is mediated by transcriptioncoactivatorp300[J]. Diabetes, 2006, 55(11): 3104-3111.
  • 6段炼,林雪波,周波.高糖负荷下人蛋白激酶Cβ_2基因过表达内皮细胞模型的构建及鉴定[J].第三军医大学学报,2009,31(20):1993-1996. 被引量:7
  • 7Valencia JV, Weldon SC, Quinn D, et al. Advanced glycationend product ligands for the receptor for advanced glycationend products: biochemical characterization and formationkinetics[J]. Analytical Biochemistry, 2004, 324(1): 68-78.
  • 8El-Osta A, Brasacchio D, Yao D, et al. Transient high glucosecauses persistent epigenetic changes and altered gene expressionduring subsequent normoglycemia[ J]. J Exp Med, 2008,205(10):2409-2417.
  • 9Siebel AL, Fernandez AZ, El-Osta A. Glycemic memoryassociated epigenetic changes[j]. Biochem Pharmacol, 2010,80(12): 1853-1859.
  • 10Pirola L; Balcerczyk A, To thill RW, et al. Genome-wide analysisdistinguishes hyperglycemia regulated epigenetic signatures ofprimary vascular cells [J]. Genome Res, 2011, 21(10): 1601-1615.

二级参考文献18

  • 1The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med, 1993, 329 : 977-986.
  • 2Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33 ). UK Prospective Diabetes Study (UKPDS) Group. Lancet,1998, 352:837-853.
  • 3Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA ,2003,290:2159-2167.
  • 4Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med, 2008, 359 : 1577-1589.
  • 5Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes, 2003,52 : 818 -823.
  • 6Kowluru RA, Koppolu P. Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities. Invest Ophthalmol Vis Sci, 2002, 43:3287-3291.
  • 7Chan PS, Kanwar M, Kowluru RA. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory. J Diabetes Complications, 2010, 24 : 55-63.
  • 8Ihnat MA, Thorpe JE, Ceriello A, et al. Reactive oxygen species mediate a cellular ' memory' of high glucose stress signaling. Diabetologia, 2007, 50: 1523-1531.
  • 9Kowluru RA, Chan PS. Metabolic memory in diabetes - from in vitro oddity to in vivo problem : role of apoptosis. Brain Res Bull, 2009,81:297-302.
  • 10Corgnali M, Pieoni L, Ihnat M, et al. Evaluation of glielazide ability to attenuate the hyperglycaemic 'memory' induced by high glucose in isolated human endothelial cells. Diabetes Metab Res Rev, 2008, 24: 301-309.

共引文献10

同被引文献52

  • 1Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications[J]. Am J Physiol Renal Physiol, 2010, 299:F14 -F25.
  • 2Pirola L, Balcerczyk A, Okabe J, et al. Epigenetic phenomena linked to diabetic complications[J]. Nat Rev Endocrinol, 2010, 6: 665-675.
  • 3Holliday R. Epigenetics: a historical overview[J]. Epigenetics, 2006, 1: 76-80.
  • 4Robertson KD. DNA methylation and human disease[J]. Nat Rev Genet, 2005, 6: 597-610.
  • 5Clouaire T, Stancheva I. Methyl- CpG binding proteins: specialized transcriptional repressors or structural components of chromatin?[J]. Cell Mol Life Sci, 2008, 65: 1509-1522.
  • 6Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities[J]. Biochim Biophys Acta, 2009, 1789: 58-68.
  • 7Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing[J]. Mutat Res, 2008, 659: 40-48.
  • 8Murr R. Interplay between different epigenetic modifications and mechanisms[J]. Adv Genet, 2010, 70: 101-141.
  • 9El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycenfia[J]. J Exp Med, 2008, 205: 2409-2417.
  • 10Jimenez- Chillaron JC, Isganaitis E, Charalambous M, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undemutrition in mice[J]. Diabetes, 2009, 58: 460- 468.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部