期刊文献+

利用高温铜渣余热进行生物质水蒸气汽化的热力学分析 被引量:3

Thermodynamic Analysis on Biomass Steam Gasification Using High-temperature Copper Slag Waste Heat
下载PDF
导出
摘要 基于平衡常数法建立生物质水蒸气汽化的热力学平衡模型。模型计算结果表明:生物质水蒸气汽化产气组分趋于稳定的汽化条件为845~950℃、S/B(水蒸气质量与生物质质量之比)为1.5~2.0(g/g),900℃、S/B为1.64时合成气(CO+H2)产量最高,为73.15%。利用高温铜渣显热作为生物质水蒸气汽化吸热反应的外热源,计算不同汽化温度下铜渣的热焓和余热利用率。计算结果表明:汽化温度在720~950℃范围内,铜渣余热利用率为25.28%~60.04%;最优汽化工况下,铜渣余热利用率为31.66%,系统能量转化率高达48%。 A thermodynamic equilibrium model of biomass steam gasification was established based on equilibri um constant method. The calculated results show that biomass steam gasification gas are stable for 845--950 ℃ and S/B of 1.5--2.0(g/g) and the highest syngas (CO+H2) yield is 73.15% for 900℃ and S/B=1.64. It was calculat ed that enthalpy of copper slag and sensible heat utilization efficiency of copper slag on different gasification tempcra ture using the sensible heat of high temperature copper slag as the heat source of biornass steam gasification. The ca} culated results show that waste heat utilization efficiency of copper slag is 25. 28%---60.04%within the gasification temperature range of 720--950℃and waste heat utilization efficiency of copper slag is 31.66 %and system energy ef fieiency is 48% on optimal conditiom
出处 《材料导报》 EI CAS CSCD 北大核心 2013年第4期154-158,162,共6页 Materials Reports
基金 国家自然科学基金(50906035) 云南省自然科学基金(2009ZC014M) 云南省教育厅科学研究基金(09Z0015)
关键词 生物质 水蒸气汽化 铜渣 余热 热力学分析 biomass, steam gasification, copper slag, waste heat, thermodynamic analysis
  • 相关文献

参考文献13

  • 1Meng Ni, Dennis Y C Leung, Michael K H Leung, et al. An overview of hydrogen production from biomass[J]. Fuel Process Techn, 2006,87 ( 5 ) : 461.
  • 2Avdhesh Kr Sharma. Equilibrium modeling of global reduc- tion reactions for a downdraft (biomass) gasifier[J]. Energy Convers Manage, 2008,49 (4) : 832.
  • 3Andres Melgara,Juan F P:rez, Hannes Laget, et al. Thermo- chemical equilibrium modelling of a gasifying process[J]. Energy Convers Manage, 2007,48(1 ) : 59.
  • 4Madhukar R Mahishi, Goswami D Y. An experimental study of hydrogen production by gasification of biomass in the presence of a COe sorbent [J]. Int J Hydrogen Energy, 2007,32(14) : 2803.
  • 5Enrique Salaices, Benito Serrano. Biomass catalytic steam gasification thermodynamics analysis and reaction experi ments in a CREC riser simulator[J]. Ind I:ng Chem Res, 2010,49(15) : 6834.
  • 6Chanchal Loha, Pradip K Chatterjee, Himadri Chatto- padhyay. Performance of fluidized bed steam gasification of biomass- Modeling and experiment [J] Energy Convers Manage, 2011,52(3) : 1583.
  • 7Jarungthammachote S,Dutta A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier [J]. Energy, 2007,32 (9) : 1660.
  • 8Madhukar R Mahishi, Goswami D Y. Thermodynamic opti mization of biomass gasifier for hydrogen production [J]. Int J Hydrogen Energy, 2007,32(16) :3831.
  • 9Jarungthammachote S,Dutta A. Equilibrium modeling of ga sification:Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers[J]. Energy Convers Manage, 2008,49 ( 16 ) : 1345.
  • 10王超,胡建杭,王华,刘慧利.预煅烧处理对铜渣特性及生物质气化催化活性的影响[J].过程工程学报,2011,11(5):806-811. 被引量:3

二级参考文献14

  • 1Bridgwater A V. Renewable Fuels and Chemicals by Thermal Processing of Biomass [J]. Chem. Eng. J., 2003, 91(2/3): 87-102.
  • 2Wang L G, Chang J, Lv P M. Novel Catalyst for Cracking of Biomass Tar [J]. Energy Fuels, 2005, 19(1): 22-17.
  • 3Orio A, Corella J, Narvaez I. Performance of Different Dolomites on Hot Raw Gas Cleaning from Biomass Gasification with Air [J]. Ind. Eng. Chem. Res., 1997, 36(9): 3800-3808.
  • 4EL-RUB A Z, Bramer E A, Brem G. Review of Catalysts for Tar Elimination in Biomass Gasification with Air [J]. Ind. Eng. Chem. Res., 2004, 43(22): 6911-6919.
  • 5Rapagna S, Jand N, Kiennemann A, et al. Steam-gasification of Biomass in a Fluidised-bed of Olivine Particles [J]. Biomass Bioenergy, 2000, 19(3): 187-197.
  • 6Devi L, Ptasinski K J, Janssen J J G, et al. Pretreated Olivine as Tar Removal Catalyst for Biomass Gasifiers: Investigation Using Naphthalene as Model Biomass Tar [J]. Fuel Process. Technol., 2005, 86(6): 707-730.
  • 7Uddin A M, Tsuda H, Wu S J, et al. Catalytic Decomposition of Biomass Tars with Iron Oxide Catalysts [J]. Fuel, 2008, 87(4/5): 451--459.
  • 8Gorai B, Jana R, Premchand K. Characteristics and Utilisation of Copper Slag--A Review [J]. Resour. Conserv. Recycle, 2003, 39(4): 299-313.
  • 9Cai J S, Christian M, Ali B. Utilization of Copper Slag in Cement and Concrete Resources [J]. Resour. Conserv. Recycle, 2008, 52(10): 1115-1120.
  • 10Provendier H, Petit C, Estoumes C, et al. Stabilisation of Active Nickel Catalysts in Partial Oxidation of Methane to Synthesis Gas by Iron Addition [J]. Appl. Catal. A: Gen., 1999, 180(1/2): 163-173.

共引文献2

同被引文献32

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部