摘要
针对室内移动机器人动态定位在网络盲区中失效的情况,提出一种根据机器人周围网络环境动态选择信标节点,完成自主定位的系统.利用扩展卡尔曼滤波后的RSSI完成测距,然后采用极大似然算法完成定位,再用异步卡尔曼算法修正定位误差.该算法成功地将经典卡尔曼滤波与其他定位算法相结合,对于定位算法的结果进行平滑和优化,修正和改进定位精度.尤其在网络盲区中,采用异步卡尔曼滤波获得最优数据.仿真实验表明该系统针对移动机器人自主动态定位具有精度高、适应性强、鲁棒性好等特点.
According to the dynamic localization failure of the indoor mobile robot in network blind spots, a self-dynamic localization system was proposed which dynamically choose beacon node on the basis of WSN. The extended Kalman filter was applied to range management by RSSI. Then, maximum likelihood estimation was used to accomplish the localization. Finally, the localization error-correct was implemented by asynchronous Kalman filter. In order to correct and improve the localization accuracy, the classical Kalman filter with the other localization algorithms were integrated successfully using the proposed method, which could smooth and optimize the result of the algorithms. Especially in network blind spots, the asynchronous Kalman filter could provide optimal data. Simulation results showed that the accuracy, adaptability and robustness of the self-dynamic localization of mobile robot are good.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2013年第3期312-316,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(61203216
61273078)
中央高校基本科研业务费专项资金资助项目(N110404030
N110804004
N110404004
N090304003)
关键词
无线传感器网络
动态定位
改进的极大似然算法
异步卡尔曼滤波算法
接收信号强度指标
wireless sensor network (WSN)
dynamic localization
improved maximum likelihood estimation
asynchronous Kalman filter algorithm
received signal strength index