期刊文献+

一类带有时滞和时滞耦合复杂网络的脉冲同步 被引量:1

Impulsive Synchronization of a Class of Complex Networks with Delay and Delayed Coupling
下载PDF
导出
摘要 研究了耦合项和非线性项含有时滞的复杂网络的脉冲同步问题.根据可控的复杂网络达到同步时耦合项会自动消失,可以得到含有脉冲影响复杂网络的误差动态网络.根据脉冲微分方程的稳定性分析,建立合适的Lyapunov-Krasovskii泛函,得到含有脉冲影响的复杂网络新的脉冲同步准则.最后,复杂网络的微分方程模型和误差系统仿真图说明了脉冲同步准则的有效性和正确性. The impulsive synchronization of complex networks with delayed coupling and delayed nonlinear term was studied. When the controlled complex networks achieved synchronization, the coupling terms were vanished. After that, the error dynamical network was derived. Then, according to the stability analysis of impulsive differential equation and establishing a proper Lyapunov-Krasovskii functional, the new synchronization criteria for complex networks with impulsive effects were obtained. Finally, differential equation of complex networks and the error system simulation diagrams showed that the synchronization criteria are effective and feasible.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期322-325,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61074073 61034005) 中央高校基本科研业务费专项资金资助项目(N110504001 N100104102) 教育部新世纪优秀人才支持计划项目(NCET-10-0306)
关键词 复杂网络 脉冲同步 时滞耦合 耦合项 误差动态网络 complex network impulsive synchronization delayed coupling coupling term error dynamical network
  • 相关文献

参考文献11

  • 1Watts D J, Strogatz S H. Collective dynamics of small-worldnetworks[ J]. Nature ,1996 ,393:440 -442.
  • 2Barabasi A L,Albert R. Emergence of scaling in randomnetworks[ J]. Science, 1999,286:509 -512.
  • 3Zhou J,Lu J A,Lti J H. Pinning adaptive synchronization ofa general complex dynamical network[ J]. Autamatica,2008,44(4):996-1003.
  • 4Wu C H, Chua L O. Synchronization in an array of linearlycoupled dynamical systems [ J ]. IEEE Transactions onCircuits and Systems /: Fundamental Theory andApplications,1995,42(8) :430 -447.
  • 5Yu W W,Chen G R,Lii J H. On pinning synchronization ofcomplex dynamical networks [J]. Autamatica,2009,45(2):429 -435.
  • 6Gong D W,Zhang H G,Wang Z S, et al. Novelsynchronization analysis for complex networks with hybridcoupling by handling multitude Kronecker product terms[ J].Neurocomputing,2012,82(8) : 14 -20.
  • 7Liu Y R, Wang Z D, Liang J L,et al. Synchronization andstate estimation for discrete-time complex networks withdistributed delays[ J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B: Cybernetics,2008,38(5) : 1314 -1325.
  • 8Lu J Q,Ho D W C, Cao J D. A unified synchronizationcriterion for impulsive dynamical networks [ J ]. Automatica,2010,46(7) :1215-1221.
  • 9Tang Y,Leung S Y S, Wong W K,et al. Impulsive pinningsynchronization of stochastic discrete-time networks [ J ].Neurocomputing,2010,73 (10/11/12) :2132 -2139.
  • 10Zheng S,Dong G G,Bi Q S. Impulsive synchronization ofcomplex networks with non-delayed and delayed coupling[J]. Physics Letters A,2009,373(46) :4255 -4259.

同被引文献33

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部