期刊文献+

一种构造拟合曲面的新方法 被引量:1

A new approach to the building blending surface fitting problem
下载PDF
导出
摘要 利用计算代数中理想的Grbner基理论研究CAGD中曲面拟合问题,对代数曲面的0至2阶几何连续拟合做了较为细致的研究,通过实例验证了本文方法的有效性与准确性。 The study of constructing blending surfaces between given surfaces is one of the important problems in geometric modeling. In this paper, a new method using GrObner bases in computer algebra combined with tech- niques in CAGD for constructing algebraic blending surfaces is introduced. In the last section of this paper, two ex- amples are given which prove the effectiveness and accuracy of this method.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期125-128,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(11101029) 中央高校基本科研业务费(610806)
关键词 曲面造型 GROBNER基 拟合曲面 surface modeling variety Gr^bner bases surface fitting
  • 相关文献

参考文献13

  • 1Yamaguchi F. Computer-aided geometric design: a totally four-dimensional approach [ M ]. New York: Springer- Verlag, 2002 : 22-78.
  • 2Badescu L. Algebraic surfaces[ M]. New York: Spring- er-Verlag, 2001 : 12-49.
  • 3Miyanishi M. Open algebraic surfaces[ M ]. Providence, US: American Mathematical Society, 2001: 8-65.
  • 4William W A, Loustaunau P. An introduction to Grbner bases[ M1. Providence, US: American Mathematical So- ciety, 1994: 1-79.
  • 5Becker T, Weispfenning V, Krede H. Grbner bases: a computational approach to commutative algebra[ M ]. New York: Springer-Verlag, 1993:5-64.
  • 6Green D J. Grbner bases and the computation of group cohomology[ M]. Berlin: Springer-Verlag, 2003: 17- 56.
  • 7David C, John L, Donal O. Ideals, Varieties, and Algo- rithms: an introduction to computational algebraic geome- try and commutative algebra [ M ]. New York: Springer- Verlag, 1992.. 47-166.
  • 8IsaacsIM.Algebra[M].北京:机械工业出版社,2003:15-98.
  • 9Kreuzer M, Robbiano L. Computational commutative al- gebra 2 [ M ]. New York: Springer-Verlag, 2005 : 85 - lld.
  • 10吴文俊,王定康.CAGD中代数曲面拟合问题[J].数学的实践与认识,1994,24(3):26-31. 被引量:19

共引文献20

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部