期刊文献+

基于采样特异性因子的实时异常检测 被引量:2

Real-time Anomaly Detection Based on Sampled Peculiarity Factor
下载PDF
导出
摘要 面向特异性的数据挖掘中,特异性因子是一个重要概念,但其计算时间复杂度过高。使用基于采样的方法定义特异性因子即采样特异性因子(Sampled Peculiarity Factor,SPF)可在不影响精度的情况下,提高运行效率。为提高基于SPF算法的异常检测效率,提出了基于SPF的学习采样频率算法,将SPF和最优采样频率结合起来提出了实时异常检测算法。在真实数据集上进行了实验,置信度为95%时,得到的最优采样频率序列为[1/32,1/16]。仿真实时异常实验表明该算法的误检率为2%。 Peculiarity factor is an important concept in the peculiarity-oriented mining, but its computation is too com- plex. Using sampling-based method to define the peculiarity factors called sampled peculiarity factor (SPF) can improve operational efficiency without affecting the accuracy. To improve the efficiency of anomaly detection algorithm based on the SPF, learning sampling frequency algorithm was proposed. Combined the optimal sampling frequency and SPF, real- time anomaly detection algorithm was proposed. Experiments use real data sets, take confidence as 95%, and the opti- mal sampling frequency sequence is between 1/32 and 1/16. Simulation results show that false detection rate of the al- gorithm is 2%.
出处 《计算机科学》 CSCD 北大核心 2013年第3期283-286,共4页 Computer Science
基金 山西省青年科技研究基金项目(200821024)资助
关键词 采样特异性因子 采样频率 实时 异常检测 Sample peculiarity factor(SPF), Sampling frequency, Real-time, Anomaly detection
  • 相关文献

参考文献13

  • 1Ohshima M,Zhong Ning,Yao Y Y,et al.Relational peculiarity oriented mining[J].Data Mining and Knowledge Discovery,2007,15:249-273.
  • 2ZhongNing,YaoYY,OhshimaM,etal.Interestingnesspeculiarity,and multi-database mining[C] // Proceedings of the 2001IEEE International Conference on Data Mining.2001:566-573.
  • 3Zhong Ning,Ohshima M,Ohsuga S.Peculiarity oriented mining and its application for knowledge discovery in amino-acid data[C] // Advances in Knowledge Discovery and Data Mining.2001,2035:260-269.
  • 4薛安荣.空间离群点数据挖掘[D].镇江:江苏大学,2008.
  • 5薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 6Chandola V,Banerjee A,Kumar V.Anomaly detection:a survey[J].ACM Computing Survey,2009,41 (3):1-54.
  • 7Yang Jian,Zhong Ning,Yao Y Y,et al.Local peculiarity factor and its application in outlier detection[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Nevada,USA:the ACM,2008:776-784.
  • 8Yang Jian,Zhong Ning,Yao Y Y,et al.Peculiarity analysis for dassifications[C] //Proceedings of the 2009 IEEE International Conference on Data Mining.Washington,DC.USA:IEEE Computer Society,2009:607-616.
  • 9Wu Ming-xi,Jermaine C.Outlier Detection by Sampling with Accuracy Guarantees[C] //Proceedings of the 2006 IEEE International Conference on Data.Washington,DC,USA:IEEE Computer Society,2006.
  • 10Lazarevic A,Kumar V.Feature bagging for outlier detection[C] //Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2005:157-166.

二级参考文献13

  • 1Han Jia-Wei,Kamber Micheline Data Mining:Concepts and Techniques (2nd Edition).San Francisco:Morgan Kaufmann Publishers,2006
  • 2Hawkins D.Identification of Outliers.London:Chapman and Hall,1980
  • 3Knorr E,Ng R.Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference.New York,1998:392-403
  • 4Breunig M M,Kriegel H P,Ng R T et al.OPTICS-OF:Identifying local outliers//Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases.Prague,1999:262-270
  • 5Breunig M,Knegel H P,Ng R et al.LOF:Identifying density-based local outliers//Proceedings of ACM SIGMOD Conference.Dallas,Texas,2000:93-104
  • 6Tang J,Chen Z,Fu A et al.Enhancing effectiveness of outlier detections for low-density patterns//Proceeding of Advances in Knowledge Discovery and Data Mining 6th PacificAsia Conference.Taipei,China,2002:535-548
  • 7Papadimitirou S,Kitagawa H,Gibbons PB,Faloutsos C.LOCI:Fast outlier detection using the local correlation integral//Proceedings of the 19th International Conference on Data Engineering.Bangalore,2003.Los Alamitos:IEEE Computer Society,2003:315-326
  • 8Chawla Sanjay,Sun Pei.SLOM:A new measure for local spatial outliers.Knowledge and Information Systems,2006,9(4):412-429
  • 9Shekhar S,Chawla S.A Tour of Spaual Databases.Upper Saddle River,N.J.:Prentice Hall,2003
  • 10Lu Chang-Tien,Chen De-Chang,Kou Yu-Feng.Detecting spatial outliers with multiple attributes//Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'03).Sacramento,2003:122-128

共引文献95

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部