期刊文献+

一种结合粒子群算法和自适应加权窗的二维Otsu图像分割新方法 被引量:1

New 2D Otsu Image Segmentation Method via Particle Swarm Algorithm and Adaptive Weighted Window
下载PDF
导出
摘要 针对传统二维Otsu门限分割方法中滤噪和小目标保持性能的不足,提出了一种基于自适应加权窗的二维Otsu门限分割的新方法。新方法对二维Otsu的邻域窗口设置方法做了改进,使用中心点的局部平稳特征来自适应地确定下一邻域窗口的尺寸大小,然后利用粒子群算法来加快门限的计算速度,从而提高门限分割的性能。实验结果表明:与目前广泛使用的一维Otsu、二维Otsu方法以及直线型门限二维Otsu方法相比,新方法有着更好的门限分割效果,并且有更好的噪声抑制和目标保持效果。 Aimed at the shortage of the abilities of noise removing and small target preservation for the conventional two-dimensional Otsu thresholding method, a new two-dimensional (21)) Otsu method based on adaptive weighted win- dow was proposed. The new method improves the window setting method of the 2D Otsu,and the window size is adap- tively determined by the local stationarity character. Then, the threshold is computed by the particle swarm algorithm, in order to improve the segmentation performance and shorten the computational time. Compared with the commonly-used one-dimensional Otsu, 2D Otsu method and line-type threshold 2D Otsu method, the proposed method has the better segmentation performance,with better performance for noise removal and small target preservation.
出处 《计算机科学》 CSCD 北大核心 2013年第3期295-298,共4页 Computer Science
基金 国家自然科学基金(61173093 61072106 61075041) 教育部长江学者和创新团队支持计划(IRT1170)资助
关键词 二维OTSU 自适应加权窗 粒子群算法 图像门限分割 Two-dimensional Otsu, Adaptive weighted window, Particle swarm algorithm, Image thresholding segmen-tation
  • 相关文献

参考文献10

  • 1张雪锋,范九伦,谢勰.基于游程统计的含噪图像分割效果评价方法[J].计算机科学,2011,38(1):271-275. 被引量:4
  • 2项海林,贾建,焦李成.基于二代bandelets域HMT模型的图像分割[J].计算机科学,2009,36(1):218-221. 被引量:1
  • 3Xu X Y,Xu S Z,Jin L H.Characteristic analysis of otsu threshold and its applications[J].Pattern recognition letters,2011,32(7):956-961.
  • 4Gong J,Li L Y,Chen W N.Fast recursive algorithm for two-dimensional thresholding[J].Pattern recognition,1998,31 (3)..295-300.
  • 5Zhang J,Hu J L.Image segmentation based on 2D Otsu method with histogram analysis[C] // International Conference on Computer Science and Software Engineering.2008:105-108.
  • 6Jobanputra R,Clausi D A.Texture analysis using Gaussian weighted grey level co-occurrence probabilities[C] //IEEE Proceedings of the First Canadian Conference on Computer and Robot Vision.2004:51-57.
  • 7Katkovnik V,Egiazarian K,Astola J.Adaptive window size image de-noising based on intersection of confidence intervals (ICI)rule[J].Journal of Mathematical Imaging and Vision,2002,16(3):223-235.
  • 8范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 9Wang Y,Li L.Heterogeneous Redundancy Allocation for SeriesParallel Multi-State Systems Using Hybrid Particle Swarm Optimization and Local Search[J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2012,42 (2):464-474.
  • 10Luan Feng,Choi J-H,Jung H-K.A Particle Swarm Optimization Algorithm With Novel Expected Fitness Evaluation for Robust Optimization Problems[J].IEEE Transactions on Magnetics,2012,48 (2):331-334.

二级参考文献30

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 3沙宇恒,丛琳,孙强,焦李成.基于Contourlet域HMT模型的多尺度图像分割[J].红外与毫米波学报,2005,24(6):472-476. 被引量:22
  • 4焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 5Crouse M S, Nowak R D,Baraniuk R G. Wavelet based statistical signal processing using hidden Markov models [J]. IEEE Transaction on Signal Process, 1998,46 (4) : 886-902
  • 6Choi H , Baraniuk R G. Multiscale image segmentation using wavelet domain hidden Markov models[J]. IEEE Transactions on Image Processing, 2001,10(9):1309-1321
  • 7Fan G L,Xia X G. A joint multicontext and multiscale approach to Bayesian image segmentation[J]. IEEE Transactions on Geosciences and Remote Sensing, 2001,39 (12):2680-2688
  • 8Sun Qiang, Gou Shui ping, Jiao Li cheng. A new approach to unsupervised image segmentation based on wavelet domain hidden Markov tree models [C]//ICIAR2004. Portugal:Porto, 2004 : 41-48
  • 9Po D D-Y, Do M N. Directional Multiscale Modeling of Images using the Contourlet Transform[J]//Statistical Signal Processing, 2003 IEEE Workshop on. 2003 : 262-265
  • 10Raghavendra B S, Bhat P*S. Contourlet Based Multiresolution Texture Segmentation Using Contextual Hidden Markov Models//CIT 2004,LNCS 3356. Springer-Verlag Berlin Heidelberg 2004. 2004: 336-343

共引文献152

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部