摘要
在雾天条件下拍摄图像时,由于受到大气散射作用的影响,图像的颜色和对比度会出现退化现象。为了提高雾天图像的质量,提出一种改进的多尺度Retine雾天图像增强算法。首先采用幂次变换压缩图像动态范围;然后采用非线性变换对图像的高光区域进行抑制;最后采用反锐化掩模滤波消除图像模糊,增强雾天图像细节信息,并采用多幅雾天图像对算法性能进行仿真测试。仿真结果表明,改进多尺度Retine的雾天图像增强算法较好地解决了传统Retine算法存在的不足,加快了雾天图像增强的运行速度,使得雾天图像更加清晰化,获得了更优的视觉效果。
When images are shot in fog circumstances, the color and contrast of fog images appear degrade phenomenon. In order to improve the quality of fog image, this paper proposed a fog image enhancement method based on improved multi-scale Retinex algorithm. Firstly, the dynamic range of image was compressed by the power transform, and then nonlinear transform was used to suppress the high light area of image,finally the unsharp mask filtering was used to e- liminate fuzzy to enhance the detail information of fog image, and a few fog images were used to test the performance of the proposed algorithms. The simulation results show that the proposed algorithm solves the shortcomings of traditional Retinex algorithms, accelerates the speed of fog image enhancement, and the fog image is more clearly, so it can obtain better visual effect.
出处
《计算机科学》
CSCD
北大核心
2013年第3期299-301,F0003,共4页
Computer Science
基金
山西农业大学创新基金(2009009)
视觉听觉跨模态相干性协同学习算法研究(62873139)资助