期刊文献+

高产琥珀酸重组大肠杆菌的构建及厌氧发酵 被引量:3

Construction and anaerobic fermentation of genetically engineered Escherichia coli for the production of succinic acid
下载PDF
导出
摘要 以野生型大肠杆菌Escherichia coli W为出发菌株,利用Red同源重组系统分别敲除了乳酸脱氢酶基因(ldhA)、乙醇脱氢酶基因(adhE)、丙酮酸甲酸裂解酶基因(pflB)、丙酮酸氧化酶基因(poxB)和乙酸激酶基因(ackA),再通过无氧生长进化筛选过程,构建得到在厌氧条件下能有效生长,并以琥珀酸为主要发酵产物的重组大肠杆菌WS100(△ldhA,△adhE,△pflB,△poxB,△ackA)。利用15 L发酵罐进行厌氧发酵测定显示,经72 h发酵,菌体密度OD600最大值可提高至6.48,琥珀酸产量达到70.13 g/L,琥珀酸的生产强度为0.98 g/(L.h),葡萄糖-琥珀酸转化率为76%。发酵液中副产物含量低,乙酸含量为5.34 g/L,乳酸产量仅为0.15 g/L,未检测到甲酸和乙醇生成。结果表明,厌氧条件下,该工程菌可有效利用低营养成分的无机盐培养基,在不表达任何外源基因的条件下可稳定高产琥珀酸,具有极大的工业化开发前景。 In this study,metabolic pathway engineering using Red recombinase system was performed on Escherichia coli W,a wild type strain,for the production of succinic acid.In order to eliminate the by-product formation of E.coli fermentation,five genes leading for production of lactate(ldhA),formate(pflB) ethanol(adhE),and acetate(poxB and ackA) were deleted from the chromosome.The resulting mutant was then further selected through adaptive(metabolic) evolution for improved anaerobic growth.The evolved strain WS100 could produce succinate as the major fermentation product.In a 15 L fermentation under anaerobic condition using mineral salt medium,WS100 produced 70.13 g/L succinate from 100 g/L glucose in 72 h,with a volumetric productivity of 0.98 g/(L·h) and a yield of 76% based on sugar metabolism.Although small amount of acetate and lactate were still produced as the minor by-products,there was no detectable production of formate and ethanol.This result demonstrated the great potential of the engineered E.coli WS100 for fermentative production of succinic acid at large scale.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2013年第1期6-10,共5页 Food and Fermentation Industries
基金 国家自然科学基金项目(NSFC31070094) 湖北省科技厅科研项目(2011CDA008) 湖北省教育厅优秀中青年人才项目(Q20121405) 湖北省楚天学者专项基金
关键词 大肠杆菌工程菌 琥珀酸 基因敲除 厌氧发酵 genetically engineered Escherichia coli succinate gene deletion anaerobic fermentation
  • 相关文献

参考文献15

  • 1詹晓北,朱一晖,Donghai Wang.琥珀酸发酵生产工艺及其产品市场[J].食品科技,2003,28(2):44-49. 被引量:41
  • 2姜岷,马江锋,陈可泉,王益娜,于丽.重组大肠杆菌产琥珀酸研究进展[J].微生物学通报,2009,36(1):120-124. 被引量:17
  • 3Lee P C, Lee S Y, Hong S H, et al. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens [ J ~ . Biotechnology Letters, 2003, 25 (2) : 111 - 114.
  • 4McKinlay .I B, Zeikus J G, Vieille C. Insights into Acti- nobacillus succinogenes fermentative metabolism in a chemi- cally defined growth medium [ J ]. Applied and Environ- mental Microbiology, 2005, 71 (11) : 6 651 -6 656.
  • 5Lee JW, Lee SY, Song H, et al. The proteome of Mannhe- imia succiniciproducens, a capnophilic rumen bacterium [J]. Proteomics, 2006, 6(12): 3550-3 566.
  • 6Song H, Lee J W, Choi S, et al. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production[ J]. Biotechnol Bioeng, 2007, 98 (6):1 296-1 304.
  • 7Wendisch V F, Bott M, Eikmanns B J. Metabolic engi- neering of escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids [Jl. CurrOpinMicrobiol, 2006, 9(3): 268-274.
  • 8Causey T B, Zhou S, Shanmugam K T, et al. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoace- tare production[J]. PNAS, 2003, 100(3) : 825 -832.
  • 9Datsenko K A, Wanner B L. One-step inactivation of chro- mosomal genes in Escherichia coli K-12 using PCR products [J~. Proc Natl Acad Sci USA, 2000, 97(12): 6 640- 6 645.
  • 10Wang Y, Tian T, Zhao J, et al. Homofermentative pro- dnction of D-lactic acid from sucrose by a metabolically engineered Escherichia coli [ J ] . Biotechnology Letters, 2012 : 34 ( 11 ) :2069 - 2075.

二级参考文献57

  • 1王庆昭,吴巍,赵学明.生物转化法制取琥珀酸及其衍生物的前景分析[J].化工进展,2004,23(7):794-798. 被引量:43
  • 2朱蕾蕾,刘宇鹏,郑璞,孙志浩.一株琥珀酸产生菌的筛选及鉴定[J].微生物学通报,2007,34(1):80-84. 被引量:16
  • 3Lee PC, Lee SY, Hong SH, et al. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology Letters, 2003, 25(2): 111-114.
  • 4McKinlay JB, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Applied and Environmental Microbiology, 2005, 71(11): 6651-6656.
  • 5Lee JW, Lee SY, Song H, et al. The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics, 2006, 6(12): 3550-3566.
  • 6Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiology Reviews, 1989, 63(3): 223-234.
  • 7Van der Werf M J, Guettler MV, Jain MK, et al. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiology, 1997, 167(6): 332-342.
  • 8Lin H, Bennett GN, San KY. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2005, 32(3): 87-93.
  • 9Chassagnole C, Noisommit-Rizzi N, Schmid JW, et al. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnology and Bioengineering, 2002, 79(1): 53-73.
  • 10Stols L, Donnelly MI. Production of succinic acid through overexpression of NAD^+-dependent malic enzyme in an Escherichia coli mutant. Applied and Environmental Microbiology, 1997, 63(7): 2695-2701.

共引文献61

同被引文献41

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部